Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T18:38:42.376Z Has data issue: false hasContentIssue false

Alternative etching methods to expand nanocasting, and use in the synthesis of hierarchically porous nickel oxide, zinc oxide, and copper monoliths

Published online by Cambridge University Press:  17 June 2013

Amy J. Grano
Affiliation:
Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336
Franchessa D. Sayler*
Affiliation:
Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336
Jan-Henrik Smått
Affiliation:
Center for Functional Materials and Laboratory of Physical Chemistry, Åbo Akademi University, Porthansgatan 3-5, FIN-20500, Turku, Finland
Martin G. Bakker*
Affiliation:
Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocasting into silica templates for preparation of mesoporous materials has up to now been limited to those metal oxides and metals that can withstand the harsh silica etching processes currently used. Two new methods of removing the silica template are reported, either by dissolving the silica in methanolic base or by dissolution in aqueous base under an external potential. The utility of these methods is demonstrated in the synthesis of hierarchically porous zinc oxide, nickel oxide, and copper monoliths that would dissolve or react using other template removal methods. The successful etching of monolithic zinc oxide using methanolic base etching can be explained by the reduced solubility of zinc oxide in methanol compared with an aqueous base, while it also reduces the formation of hydroxides when etching the nickel oxide and copper monoliths. Alternatively, the formation of highly soluble copper oxide/hydroxide can be avoided by holding the copper monolith at a sufficiently negative potential while etching with an aqueous base.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hierarchically Structured Porous Materials, edited by Su, B-L., Sanchez, C., and Yang, X-Y. (Wiley-VCH Verlag, Berlin, 2012).Google Scholar
Li, Y., Fu, Z-Y., and Su, B-L.: Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634 (2012).CrossRefGoogle Scholar
Banhart, J.: Metal foams: Production and stability Adv. Eng. Mater. 8(9), 781 (2006).CrossRefGoogle Scholar
Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., and Baumann, T.F.: Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4, 656 (2011).CrossRefGoogle Scholar
Nakanishi, K.: Hierarchically porous materials by phase separation: Monoliths, in Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optic, Energy, and Life Science, edited by Bao-Lian, S., Sanchez, C., and Xiao-Yu, Y. (Wiley-VCH Verlag, Berlin, 2012), p. 241.Google Scholar
Ko, C.H. and Ryoo, R.: Imaging the channels in mesoporous molecular sieves with platinum. Chem. Commun. 21, 2467 (1996).CrossRefGoogle Scholar
Ryoo, R., Joo, S.H., and Jun, S.: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation J. Phys. Chem. B 103, 7743 (1999).CrossRefGoogle Scholar
Yang, H., Shi, Q., Liu, X., Xie, S., Jiang, D., Zhang, F., Yu, C., Tu, B., and Zhao, D.: Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. Chem. Commun. 23,2842 (2002).CrossRefGoogle Scholar
Dao, F., Lu, Q., and Zhao, D.: Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Adv. Mater. 15(9), 739 (2003).Google Scholar
Lu, A-H., Zhao, D., and Wan, Y.: Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials (Royal Society of Chemistry, Cambridge, 2010).Google Scholar
Lu, A-H. and Schüth, F.: Nanocasting: A versatile strategy for creating nanostructured porous materials. Adv. Mater. 18, 1793 (2006).CrossRefGoogle Scholar
Smått, J-H., Sayler, F.M., Grano, A., and Bakker, M.G.: Formation of hierarchically porous metal oxide and metal monoliths by nanocasting into silica monoliths. Adv. Eng. Mater. 14(12), 1059 (2012).CrossRefGoogle Scholar
Ren, Y., Ma, Z., and Bruce, P.G.: Ordered mesoporous metal oxides: Synthesis and applications. Chem. Soc. Rev. 41, 4909 (2012).CrossRefGoogle ScholarPubMed
Linares, N., Hartmann, S., Galarneau, A., and Barbaro, P.: Continuous partial hydrogenation reactions by Pd@unconventional bimodal porous titania monolith catalysts. ACS Catal. 2, 2194 (2012).CrossRefGoogle Scholar
Cabrera, K., Lubda, D., Eggenweiler, H-M., Minakuchi, H., and Nakanishi, K.: A new monolithic-type HPLC column for fast separations. J. High Resolut. Chromatogr. 23(1), 93 (2000).3.0.CO;2-2>CrossRefGoogle Scholar
Tanaka, N., Nagayama, H., Kobayashi, H., Ikegami, T., Hosoya, K., Ishizuka, N., Minakuchi, H., Nakanishi, K., Cabrera, K., and Lubda, D.: Monolithic silica columns for HPLC, micro-HPLC, and CEC. J. High Resolut. Chromatogr. 23(1), 111 (2000).3.0.CO;2-H>CrossRefGoogle Scholar
Taguchi, A., Smått, J-H., and Lindén, M.: Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv. Mater. 15(14), 1209 (2003).CrossRefGoogle Scholar
Smått, J-H., Weidenthaler, C., Rosenholm, J.B., and Lindén, M.: Hierarchically porous metal oxide monoliths prepared by the nanocasting route. Chem. Mater. 18, 1443 (2006).CrossRefGoogle Scholar
Polarz, S., Orlov, A.V., Schüth, F., and Lu, A-H.: Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls. Chem. Euro. J. 13, 592 (2007).CrossRefGoogle ScholarPubMed
Waitz, T., Tiemann, M., Klar, P.J., Sann, J., Stehr, J., and Meyer, B.K.: Crystalline ZnO with an enhanced surface area obtained by nanocasting. Appl. Phys. Lett. 90, 123108 (2007).CrossRefGoogle Scholar
Tiemann, M.: Repeated templating. Chem. Mater. 20, 961 (2008).CrossRefGoogle Scholar
Lepoutre, S., Julián-López, B., Sanchez, C., Amenitsch, H., Linden, M., and Grosso, D.: Nanocasted mesoporous nanocrystalline ZnO thin films. J. Mater. Chem. 20, 537 (2010).CrossRefGoogle Scholar
Smått, J-H., Schunk, S.A., and Lindén, M.: Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem. Mater. 15, 2354 (2003).CrossRefGoogle Scholar
Lu, A-H., Smått, J-H., Backlund, S., and Lindén, M.: Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. Microporous Mesoporous Mater. 72, 59 (2004).CrossRefGoogle Scholar
Liu, C. and Li, Y.: Synthesis and characterization of amorphous α-nickel hydroxide. J. Alloy Compd. 478, 415 (2009).CrossRefGoogle Scholar
Moulijn, J.A., van Diepen, A.E., and Kapteijn, F.: Catalyst deactivation: Is it predictable? What to do? Appl. Catal., A. 212, 3 (2001).CrossRefGoogle Scholar
Cao, A., Lu, R., and Veser, G.: Stabilizing metal nanoparticles for heterogeneous catalysis. Phys. Chem. Chem. Phys. 12, 13499 (2010).CrossRefGoogle ScholarPubMed
Lamoreaux, R.H., Hildenbrand, D.L., and Brewer, L.: High-temperature vaporization behavior of oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg. J. Phys. Chem. Ref. Data 16, 419 (1987).CrossRefGoogle Scholar
Lide, D.R.: Crc Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 85 ed. (CRC Press, London, 2004).Google Scholar
Yue, W. and Zhou, W.: Porous crystals of cubic metal oxides templated by cage-containing mesoporous silica. J. Mater. Chem. 17, 4947 (2007).CrossRefGoogle Scholar
Cabo, M.E., Pellicer, E., Rossinyol, E., Castell, O., Surinach, S., and Baro, M.D.: Mesoporous NiCo2O4 spinel: Influence of calcination temperature over phase purity and thermal stability. Cryst. Growth Des. 9, 4814 (2009).CrossRefGoogle Scholar
Liu, H., Wang, G., Liu, J., Qiao, S., and Ahn, H.: Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 21, 3046 (2011).CrossRefGoogle Scholar
Jiao, F., Hill, A.H., Harrison, A., Berko, A., Chadwick, A.V., and Bruce, P.G.: Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. J. Am. Chem. Soc. 130, 5262 (2008).CrossRefGoogle Scholar
Kim, G.J. and Guo, X-F.: Fabrication and application of highly ordered mesoporous Co3O4, NiO, and their metals. J. Phys. Chem. Solids 71, 612 (2010).CrossRefGoogle Scholar
Yue, W. and Zhou, W.: Synthesis of porous single crystals of metal oxides via a solid-liquid route. Chem. Mater. 19, 2359 (2007).CrossRefGoogle Scholar
Gayer, K.H. and Garrett, A.B.: The equilibria of nickel hydroxide, Ni(OH)2, in solutions of hydrocholic acid and sodium hydroxide at 25º. J. Am. Chem. Soc. 71(9), 2973 (1949).CrossRefGoogle Scholar
Sayler, F.M., Grano, A.J., Wiedmer, S., Smått, J-H., and Bakker, M.G.: Application of 3-D hierarchically porous silver, cobalt oxide and zinc oxide monoliths to chromatographic separations. MRS Proc. 1389, g0316 (2012). doi:http://dx.doi.org/10.1557/opl.2012.525.CrossRefGoogle Scholar
Yen, H., Seo, Y., Guillet-Nicolas, R., Kaliaguinec, S., and Kleitz, F.: One-step-impregnation hard templating synthesis of high-surface-area nanostructured mixed metal oxides (NiFe2O4, CuFe2O4 and Cu/CeO2). Chem. Commun. 47, 10473 (2011).CrossRefGoogle ScholarPubMed
Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, Houston, Texas, 1974).Google Scholar
Supplementary material: File

Grano Supplementary Material

Figures S1-S2

Download Grano Supplementary Material(File)
File 351.7 KB