Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T02:33:12.107Z Has data issue: false hasContentIssue false

Air oxidation of undoped and B-doped polycrystalline diamond films at high temperature

Published online by Cambridge University Press:  31 January 2011

Koichi Miyata
Affiliation:
Kobe Steel, Ltd., Electronics Research Laboratory, 1-5-5 Takatsuka-dai, Nishi-ku, Kobe 651–22, Japan
Koji Kobashi
Affiliation:
Kobe Steel, Ltd., Electronics Research Laboratory, 1-5-5 Takatsuka-dai, Nishi-ku, Kobe 651–22, Japan
Get access

Abstract

Air oxidation of undoped and B-doped polycrystalline diamond films was investigated at temperatures between 500 and 700 °C. Diamond (111) facets were etched for both undoped and B-doped films after 1 h at 700 °C. The etching rate of (111) facet due to oxidation was approximately 50% lower by B-doping of 1 × 1019 cm−3, presumably because of the decrease of sp2 bands and lattice defects that were identified by Raman and photoluminescence spectroscopy. X-ray photoelectron and electron energy loss spectroscopy revealed that by the high temperature treatment, the diamond surface was initially converted into graphite and successively etched by oxygen.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Field, J. E., Properties of Diamond (Academic, London, 1979), p. 79.Google Scholar
2.Fujimori, N., Imai, T., and Doi, A., Vacuum 6, 99 (1986).CrossRefGoogle Scholar
3.Sato, Y., Kamo, M., and Setaka, N., in High Tech Ceramics, edited by Vincenzini, P. (Elsevier, Amsterdam, 1987), p. 1719.Google Scholar
4.Aslam, M., Masood, A., Fredericks, R.J., and Tamor, M. A., Proc. SPIE 1694, 184 (1992).CrossRefGoogle Scholar
5.Bade, J. P., Sahaida, S. R., Stoner, B. R., von Windheim, J. A., Glass, J.T., Miyata, K., Nishimura, K., and Kobashi, K., Diamond Rel. Mater. 2, 816 (1993).CrossRefGoogle Scholar
6.Gildenblat, G. S., Grot, S. A., Hatfield, C.W., Wronski, C.R., Badzian, A.R., Badzian, T., and Messier, R., Mater. Res. Bull. 25, 129 (1990).CrossRefGoogle Scholar
7.Geis, M.W., Rathman, D.D., Ehrlich, D. J., Murphy, R.A., and Lindley, W. T., IEEE Electron. Dev. Lett. 8, 341 (1987).CrossRefGoogle Scholar
8.Johnson, C. E., Weimer, W. A., and Harris, D. C., Mater. Res. Bull. 24, 1127 (1989).CrossRefGoogle Scholar
9.Plano, L. S., Yokota, S., and Ravi, K.V., in Diamond and DiamondLike Films, edited by Dismukes, J. P., Purdes, A. J., Spear, K. E., Meyerson, B. S., Ravi, K.V., Moustakas, T.D., and Yoder, M. (Electrochemical Society, Pennington, NJ, 1989), p. 380.Google Scholar
10.Tankala, K., DebRoy, T., and Alam, M., J. Mater. Res. 5, 2483 (1990).CrossRefGoogle Scholar
11.Johnson, C. E., Hasting, M.A.S., and Weimer, W. A., J. Mater. Res. 5, 2320 (1990).CrossRefGoogle Scholar
12.Joshi, A., Nimmagadda, R., and Herrington, J., J. Vac. Sci. Technol. A 8, 2137 (1990).CrossRefGoogle Scholar
13.Nimmagadda, R. R., Joshi, A., and Hsu, W. L., J. Mater. Res. 5, 2445 (1990).CrossRefGoogle Scholar
14.Uchida, N., Kurita, T., Uematsu, K., and Saito, K., J. Mater. Sci. Lett. 9, 249 (1990).CrossRefGoogle Scholar
15.Zhu, W., Wang, X.H., Badzian, A.R., and Messier, R., in New Diamond Science and Technology, edited by Messier, R., Glass, J.T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Proc. NDST-2, Pittsburgh, PA, 1991), p. 821.Google Scholar
16.Sun, Q. and Alam, M., J. Mater. Sci. 27, 5857 (1992).CrossRefGoogle Scholar
17.Sun, Q. and Alam, M., J. Electrochem. Soc. 139, 933 (1992).CrossRefGoogle Scholar
18.Alam, M. and Sun, Q., J. Mater. Res. 8, 2870 (1993).CrossRefGoogle Scholar
19.Miyauchi, S., Kumagai, K., Miyata, K., Nishimura, K., Kobashi, K., Glass, J. T., and Buckley-Golder, I. M., Surf. Coatings Technol. 47, 465 (1991).CrossRefGoogle Scholar
20.Nishimura, K., Das, K., and Glass, J. T., J. Appl. Phys. 69, 3142 (1991).CrossRefGoogle Scholar
21.Wang, X. H., Ma, G-H.M., Zhu, W., Glass, J. T., Bergman, L., Turner, K.F., and Nemanich, R. J., Diamond Relat. Mater. 1, 828 (1992).CrossRefGoogle Scholar
22.Miyata, K. and Dreifus, D. L., Jpn. J. Appl. Phys. 33, 4526 (1994).CrossRefGoogle Scholar
23.Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. B 38, 4067 (1988).CrossRefGoogle Scholar
24.Grot, S. A., Gildenblat, G.Sh., Hatfield, C. W., Wronski, C. R., Badzian, A.R., Badzian, T., and Messier, R., IEEE Electron Dev. Lett. 11, 100 (1990).CrossRefGoogle Scholar
25.Kern, W. and Puotinen, D.A., RCA Rev. 31, 187 (1970).Google Scholar
26.Evans, T. and Phaal, C., Proc. 5th Biennial Conf. on Carbon (1961), Vol. 1, p. 147.Google Scholar
27.Shiomi, H., Tanabe, K., Nishibayashi, Y., and Fujimori, N., Jpn. J. Appl. Phys. 29, 34 (1990).CrossRefGoogle Scholar
28.Mori, Y., Yagi, H., Deguchi, M., Sogi, T., Yokota, Y., Eimori, N., Yagyu, H., Ohnishi, H., Kitabatake, M., Nishimura, K., Hatta, A., Ito, T., Hirao, T., Sasaki, T., and Hiraki, A., Jpn. J. Appl. Phys. 32, 4661 (1993).CrossRefGoogle Scholar
29.Ruan, J., Choyke, W. J., and Partlow, W. D., Appl. Phys. Lett. 58, 295 (1991).CrossRefGoogle Scholar
30.Feng, T. and Schwartz, B.D., J. Appl. Phys. 73, 1415 (1993).CrossRefGoogle Scholar
31.Mori, Y., Kawarada, H., and Hiraki, H., Appl. Phys. Lett. 58, 940 (1991).CrossRefGoogle Scholar
32.McFeely, F.R., Kowalczyk, S.P., Ley, L., Cavell, R. G., Pollak, R. A., and Shirley, D. A., Phys. Rev. B 9, 5268 (1974).CrossRefGoogle Scholar
33.Yamazaki, H. and Uchiyama, A., Surf. Sci. 287/288, 308 (1993).CrossRefGoogle Scholar