Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T01:44:16.341Z Has data issue: false hasContentIssue false

18O study of the oxidation of reactively sputtered Ti1−xAlxN barrier

Published online by Cambridge University Press:  31 January 2011

M. C. Hugon
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université de Paris Sud, 91405 Orsay, France
F. Varniere
Affiliation:
Laboratoire Charles Fabry, Université Paris Sud, 91403 Orsay, France
F. Letendu
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université de Paris Sud, 91405 Orsay, France
B. Agius
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université de Paris Sud, 91405 Orsay, France
I. Vickridge
Affiliation:
Groupe de Physique des solides (GPS), Tour 23, Université Paris 6 et 7, 75251 Paris, France
A. I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina
Get access

Abstract

The preparation of high-permittivity perovskite materials requires high-temperature (550–750 °C) oxidizing environments, providing stringent limitations on the choice of electrode materials. To minimize interdiffusion and oxidation reactions, an electrically conductive diffusion barrier such as Ti1−xAlxN is needed below the electrode material (Pt, IrO2, RuO2…). Ti1−xAlxN films were deposited by multitarget reactive sputtering in a mixture of Ar and N2. The stability of these films has been investigated under typical conditions for crystallization of perovskite dielectrics. Sample composition was characterized using Rutherford backscattering spectroscopy and nuclear reaction analysis. In particular, the concentration depth profiles of both 18O and 27Al were measured before and after RTA treatments via the narrow resonances of 18O(p,α)15N at 151 keV (FWHM = 100 eV) and 27Al(p,γ)28Si at 992 keV (FWHM = 100 eV). The different 18O excitation curves show that the oxidation resistance increases with Al incorporation. The Al excitation curves indicate a uniform Al content for as-deposited TixAl1−xN and reveal Al diffusion to the surface during the oxidation process which indicates the formation of an Al-rich oxide layer at the TixAl1−xN surface, leaving a layer depleted in Al below it.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Khamankar, R.B., Kressley, M.A., Visokay, M.R., Moise, T., Nemento, S., Okuno, Y., Fang, S.J., Wilson, A.M., Gaynor, J.F., Crenshaw, D.L., et al., IEDM 245 (1997).Google Scholar
2Fujii, E., Otsuki, T., Judai, Y., Shimada, Y., Azuma, M., Uemoto, Y., Nagano, Y., Nasu, T., Izutsu, Y., and Maysuda, A., IEDM 597 (1997).Google Scholar
3Fazan, P.C., Integr. Ferroelectr. 4, 247 (1994).CrossRefGoogle Scholar
4McIntyre, D., Greene, J.E., Hakansson, G., Sundgren, J.E., and Munz, W.D., J. Appl. Phys. 67, 1542 (1990).CrossRefGoogle Scholar
5Kim, C.W. and Kim, K.H., Thin Solid Films 307, 113 (1997).CrossRefGoogle Scholar
6Hara, T., Tanaka, M., Sakiyama, K., Onishi, S., Ishahara, K., and Kudo, J., Jpn. J. Appl. Phys. 36, L893 (1997).CrossRefGoogle Scholar
7Grill, A., Kane, W., Viggiano, J., Brady, M., and Laibowitz, R., J. Mater. Res. 7, 3260 (1992).CrossRefGoogle Scholar
8Vickridge, I. and Amsel, G., Nucl. Instrum. Methods Phys. Res. B45, 6 (1996).Google Scholar
9Jehn, H.A., Hofmann, S., Rückborn, V.E., and Leyendecker, T., J. Vac. Sci. Technol. A4, 2701 (1986).CrossRefGoogle Scholar
10Freller, H. and Haessler, H., Thin Solid Films 153, 67 (1987).CrossRefGoogle Scholar
11Knotek, O. and Leyendecker, T., J. Solid State Chem. 70, 318 (1987).CrossRefGoogle Scholar
12Tanaka, Y., Gür, T.M., Kelly, M., Hagstrom, S.T., and Ikeda, T., Thin Solid Films 228, 238 (1993).CrossRefGoogle Scholar
13Esaka, F., Furuya, K., Shimada, H., Imamura, M., Matsubayashi, N., Sato, T., Nishijima, A., Kikuchi, T., Kawana, A., and Ichimura, H., Surf. Sci. 377–379, 197 (1997).CrossRefGoogle Scholar
14Inoue, S., Uchida, H., Yoshinaga, Y., and Koterazawa, K., Thin Solid Films 300, 171 (1997).CrossRefGoogle Scholar
15Ishizuka, Y., Kim, D.J., Streiffer, S.K., and Kingon, A., in Ferro-electric Thin Films VII, edited by Jones, R.E., Schwartz, R.W., Summerfelt, S.R., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 191.Google Scholar
16Hugon, M.C., Desvignes, J.M., Letendu, F., Agius, B., Vickridge, I., Kim, D.J., and Kingon, A.I., Nucl. Instrum. Methods Phys. Res., Sect B 161–163, 578 (2000).CrossRefGoogle Scholar
17Hugon, M.C., Desvignes, J.M., Letendu, F., Agius, B., Vickridge, I., Kim, D.J., and Kingon, A.I., in Ferroelectric Thin Films VIII, edited by Schwartz, R.W., Summerfelt, S.R., and McIntyre, P.C. (Mater. Res. Soc. Symp. Proc. 596, Warrendale, PA, 2000), p. 97.Google Scholar
18Battistig, G., Amsel, G., d’Artemare, E., and Vickridge, I.C., Nucl. Instrum. Methods B 61, 369 (1991).CrossRefGoogle Scholar
19Battistig, G., Amsel, G., d’Artemare, E., and Vickridge, I.C., Nucl. Instrum. Methods B 66, 1 (1992).CrossRefGoogle Scholar
20Kim, B.J., Kim, Y.C., Nah, J.W., and Lee, J.J., J. Vac. Sci. Technol. A 17, 133 (1999).CrossRefGoogle Scholar
21Tampieri, A., Landi, E., and Bellosi, A., Br. Ceram. Trans. J. 90, 194 (1991).Google Scholar
22Ichmura, H. and Kawana, A., J. Mater. Res. 8, 1093 (1993).CrossRefGoogle Scholar
23Wittmer, M., Noser, J., and Melchior, H., J. Appl. Phys. 52, 6659 (1981).CrossRefGoogle Scholar
24Joshi, A. and Hu, H.S., Surf. Coat. Technol. 76/77, 499 (1995).CrossRefGoogle Scholar