Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T02:11:50.886Z Has data issue: false hasContentIssue false

Functional ear symptoms referred to an otology clinic: incidence, co-morbidity, aetiological factors and a new experience-driven clinical model

Published online by Cambridge University Press:  08 July 2022

D W Scholfield
Affiliation:
Department of ENT, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
D Chandrasekharan
Affiliation:
Department of ENT, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
A Bahra
Affiliation:
Department of Neurology, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
M Williams
Affiliation:
Audiology Department, Anglia Ruskin University, Cambridge, London, UK
N Patel*
Affiliation:
Department of ENT, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
*
Author for correspondence: Mr N Patel, ENT Department, Whipps Cross University Hospital, Barts Health NHS Trust, Whipps Cross Rd, London E11 1NR, UK E-mail: [email protected]

Abstract

Objective

This study aimed to review the incidence and co-morbidity of functional ear symptoms in new referrals to an adult otology clinic and present a clinical model based on neuroscientific concepts.

Method

This was a retrospective review of 1000 consecutive new referrals to an adult otology clinic.

Results

Functional disorder was the primary diagnosis in 346 patients (34.6 per cent). Functional ear symptoms included tinnitus (69.7 per cent), imbalance (23.7 per cent), otalgia (22.8 per cent) and aural fullness (19.1 per cent), with more than one symptom occurring in 25.1 per cent of patients. Co-morbidities included sensorineural hearing loss (39 per cent), emotional stress (30 per cent) and chronic illness (22 per cent).

Conclusion

Functional disorders commonly present to the otology clinic, often in the presence of emotional stress or chronic illness. They occur because of adaptation of brain circuitry to experience, including adverse events, chronic illness and fear learning. This study presented an experience-driven clinical model based on these concepts. An understanding of these principles will significantly aid otolaryngologists who encounter patients with functional ear symptoms.

Type
Main Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Mr N Patel takes responsibility for the integrity of the content of the paper

Presented at the European Association of Otology and Neuro-otology, 8 September 2021, London, UK and the British Academic Conference in Otolaryngology, 10–12th January 2021, Birmingham, UK

References

American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Arlington, VA: American Psychiatric Association, 2013CrossRefGoogle Scholar
Stone, J, Carson, A, Duncan, R, Roberts, R, Warlow, C, Hibberd, C et al. Who is referred to neurology clinics?--the diagnoses made in 3781 new patients. Clinical Neurol Neurosurg 2010;112:747–51CrossRefGoogle ScholarPubMed
Llinas, RR, Ribary, U, Jeanmonod, D, Kronberg, E, Mitra, PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 1999;96:15 222–7CrossRefGoogle ScholarPubMed
Naghdi, L, Ahonen, H, Macario, P, Bartel, L. The effect of low-frequency sound stimulation on patients with fibromyalgia: a clinical study. Pain Res Manag 2015;20:e21–7CrossRefGoogle ScholarPubMed
Lauschke, JL, Plant, GT, Fraser, CL. Visual snow: a thalamocortical dysrhythmia of the visual pathway? J Clin Neurosci 2016;28:123–7CrossRefGoogle Scholar
de Tommaso, M, Ambrosini, A, Brighina, F, Coppola, G, Perrotta, A, Pierelli, F et al. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 2014;10:144–55CrossRefGoogle ScholarPubMed
Ban, JH, Jin, SM. A clinical analysis of psychogenic sudden deafness. Otolaryngol Head Neck Surg 2006;134:970–4CrossRefGoogle ScholarPubMed
Rauschecker, JP, May, ES, Maudoux, A, Ploner, M. Frontostriatal gating of tinnitus and chronic pain. Trends Cogn Sci 2015;19:567–78CrossRefGoogle ScholarPubMed
Li, K, Si, L, Cui, B, Ling, X, Shen, B, Yang, X. Altered intra- and inter-network functional connectivity in patients with persistent postural-perceptual dizziness. Neuroimage Clin 2020;26:102216CrossRefGoogle ScholarPubMed
Tedeschi, G, Russo, A, Conte, F, Laura, M, Tessitore, A. Vestibular migraine pathophysiology: insights from structural and functional neuroimaging. Neurol Sci 2015;36(suppl 1):3740CrossRefGoogle ScholarPubMed
Dash, AK, Panda, N, Khandelwal, G, Lal, V, Mann, SS. Migraine and audiovestibular dysfunction: is there a correlation? Am J Otolaryngol 2008;29:295–9CrossRefGoogle ScholarPubMed
Park, MS, Lee, HY, Kang, HM, Ryu, EW, Lee, SK, Yeo, SG. Clinical manifestations of aural fullness. Yonsei Med J 2012;53:985–91CrossRefGoogle ScholarPubMed
Moshtaghi, O, Ghavami, Y, Mahboubi, H, Sahyouni, R, Haidar, Y, Ziai, K et al. Migraine-related aural fullness: a potential clinical entity. Otolaryngol Head Neck Surg 2018;158:100–2CrossRefGoogle ScholarPubMed
Teixido, M, Seymour, P, Kung, B, Lazar, S, Sabra, O. Otalgia associated with migraine. Otol Neurotol 2011;32:322–5CrossRefGoogle ScholarPubMed
Yuasa, R, Kambayashi, J, Saijo, S, Hozawa, K, Iino, Y, Kaneko, Y. Sensation of aural fullness and its treatment with an autonomic nerve blocking agent. Acta Otolaryngol Suppl 1987;435:122–9CrossRefGoogle ScholarPubMed
Barch, DM, Belden, AC, Tillman, R, Whalen, D, Luby, JL. Early childhood adverse experiences, inferior frontal gyrus connectivity, and the trajectory of externalizing psychopathology. J Am Acad Child Adolesc Psychiatry 2018;57:183–90CrossRefGoogle ScholarPubMed
Clemens, B, Wagels, L, Bauchmuller, M, Bergs, R, Habel, U, Kohn, N. Alerted default mode: functional connectivity changes in the aftermath of social stress. Sci Rep 2017;7:40180CrossRefGoogle ScholarPubMed
Rabellino, D, Tursich, M, Frewen, PA, Daniels, JK, Densmore, M, Theberge, J et al. Intrinsic connectivity networks in post–traumatic stress disorder during sub- and supraliminal processing of threat-related stimuli. Acta Psychiatr Scand 2015;132:365–78CrossRefGoogle ScholarPubMed
Feng, P, Becker, B, Zheng, Y, Feng, T. Sleep deprivation affects fear memory consolidation: bi-stable amygdala connectivity with insula and ventromedial prefrontal cortex. Soc Cogn Affect Neurosci 2018;13:145–55CrossRefGoogle ScholarPubMed
Ludwig, L, Pasman, JA, Nicholson, T, Aybek, S, David, AS, Tuck, S et al. Stressful life events and maltreatment in conversion (functional neurological) disorder: systematic review and meta-analysis of case-control studies. Lancet Psychiatry 2018;5:307–20CrossRefGoogle ScholarPubMed
Price, JL. Free will versus survival: brain systems that underlie intrinsic constraints on behavior. J Comparative Neurol 2005;493:132–9CrossRefGoogle ScholarPubMed
Sherin, JE, Nemeroff, CB. Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci 2011;13:263–78CrossRefGoogle ScholarPubMed
Kroenke, K. Patients presenting with somatic complaints: epidemiology, psychiatric comorbidity and management. Int J Methods Psychiatr Res 2003;12:3443CrossRefGoogle ScholarPubMed
Voon, V, Cavanna, AE, Coburn, K, Sampson, S, Reeve, A, LaFrance, WC Jr. Functional neuroanatomy and neurophysiology of functional neurological disorders (conversion disorder). J Neuropsychiatr Clin Neurosci 2016;28:168–90CrossRefGoogle ScholarPubMed
Bennett, K, Diamond, C, Hoeritzauer, I, Gardiner, P, McWhirter, L, Carson, A et al. A practical review of functional neurological disorder (FND) for the general physician. Clin Med (Lond) 2021;21:2836CrossRefGoogle ScholarPubMed
Perez, DL, Barsky, AJ, Vago, DR, Baslet, G, Silbersweig, DA. A neural circuit framework for somatosensory amplification in somatoform disorders. J Neuropsychiatr Clin Neurosci 2015;27:e4050CrossRefGoogle ScholarPubMed
Monaco, A, Cattaneo, R, Marci, MC, Pietropaoli, D, Ortu, E. Central sensitization-based classification for temporomandibular disorders: a pathogenetic hypothesis. Pain Res Manag 2017;2017:5957076CrossRefGoogle ScholarPubMed
Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 2011;15:483506CrossRefGoogle ScholarPubMed
Izquierdo, I, Furini, CR, Myskiw, JC. Fear memory. Physiol Rev 2016;96:695750CrossRefGoogle ScholarPubMed
Seeley, WW, Menon, V, Schatzberg, AF, Keller, J, Glover, GH, Kenna, H et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349–56CrossRefGoogle ScholarPubMed
Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008;1124:138CrossRefGoogle ScholarPubMed
Menon, V, Uddin, LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 2010;214:655–67CrossRefGoogle ScholarPubMed
Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatr 2003;160:1323CrossRefGoogle ScholarPubMed
Sridharan, D, Levitin, DJ, Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 2008;105:12 569–74CrossRefGoogle ScholarPubMed
Bowers, MB Jr. Pathogenesis of acute schizophrenic psychosis. An experimental approach. Arch Gen Psychiatr 1968;19:348–55CrossRefGoogle ScholarPubMed
Perez, DL, Williams, B, Matin, N, LaFrance, WC Jr., Costumero-Ramos, V, Fricchione, GL et al. Corticolimbic structural alterations linked to health status and trait anxiety in functional neurological disorder. J Neurol Neurosurg Psychiatry 2017;88:1052–9CrossRefGoogle ScholarPubMed
Salviati, M, Bersani, FS, Valeriani, G, Minichino, A, Panico, R, Romano, GF et al. A brain centred view of psychiatric comorbidity in tinnitus: from otology to hodology. Neural Plast 2014;2014:817852CrossRefGoogle ScholarPubMed
Vanneste, S, Plazier, M, der Loo, E, de Heyning, PV, Congedo, M, De Ridder, D. The neural correlates of tinnitus-related distress. Neuroimage 2010;52:470–80CrossRefGoogle ScholarPubMed
Trevis, KJ, Tailby, C, Grayden, DB, McLachlan, NM, Jackson, GD, Wilson, SJ. Identification of a neurocognitive mechanism underpinning awareness of chronic tinnitus. Sci Rep 2017;7:15220CrossRefGoogle ScholarPubMed
Hodkinson, DJ, Wilcox, SL, Veggeberg, R, Noseda, R, Burstein, R, Borsook, D et al. Increased amplitude of thalamocortical low-frequency oscillations in patients with migraine. J Neurosci 2016;36:8026–36CrossRefGoogle ScholarPubMed
De Ridder, D, Vanneste, S, Langguth, B, Llinas, R. Thalamocortical dysrhythmia: a theoretical update in tinnitus. Front Neurol 2015;6:124CrossRefGoogle ScholarPubMed
Schulman, JJ, Cancro, R, Lowe, S, Lu, F, Walton, KD, Llinas, RR. Imaging of thalamocortical dysrhythmia in neuropsychiatry. Front Hum Neurosci 2011;5:69CrossRefGoogle ScholarPubMed
Walton, KD, Llinás, RR. Frontiers in neuroscience central pain as a thalamocortical dysrhythmia: a thalamic efference disconnection? In: Kruger, L, Light, AR, eds. Translational Pain Research: From Mouse to Man. Boca Raton (FL): CRC Press/Taylor & Francis, 2010Google Scholar
Llinas, RR, Steriade, M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol 2006;95:3297–308CrossRefGoogle ScholarPubMed
van Dongen, RM, Waaijer, LC, Onderwater, GLJ, Ferrari, MD, Terwindt, GM. Treatment effects and comorbid diseases in 58 patients with visual snow. Neurology 2019;93:e398e403CrossRefGoogle ScholarPubMed
Renze, M. Visual snow syndrome and its relationship to tinnitus. Int Tinnitus J 2017;21:74–5CrossRefGoogle ScholarPubMed
May, A, Ashburner, J, Büchel, C, McGonigle, DJ, Friston, KJ, Frackowiak, RS et al. Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nature Med 1999;5:836–8CrossRefGoogle Scholar
Langguth, B, Hund, V, Busch, V, Jürgens, TP, Lainez, JM, Landgrebe, M et al. Tinnitus and headache. BioMed Res Int 2015;2015:797416CrossRefGoogle ScholarPubMed
Chen, WH, Hsu, YL, Chen, YS, Yin, HL. Clocking tinnitus: an audiology symptom of migraine. Clin Neurol Neurosurg 2019;177:73–6CrossRefGoogle ScholarPubMed
Hwang, JH, Tsai, SJ, Liu, TC, Chen, YC, Lai, JT. Association of tinnitus and other cochlear disorders with a history of migraines. JAMA Otolaryngol Head Neck Surg 2018;144:712–7CrossRefGoogle ScholarPubMed
Bishop, SJ. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 2007;11:307–16CrossRefGoogle ScholarPubMed
Arnsten, AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nature Rev Neurosci 2009;10:410–22CrossRefGoogle ScholarPubMed
Ciminelli, P, Machado, S, Palmeira, M, Carta, MG, Beirith, SC, Nigri, ML et al. Tinnitus: the sound of stress? Clin Pract Epidemiol Ment Health 2018;14:264–9CrossRefGoogle ScholarPubMed
Gomaa, MA, Elmagd, MH, Elbadry, MM, Kader, RM. Depression, Anxiety and Stress Scale in patients with tinnitus and hearing loss. Eur Arch Otorhinolaryngol 2014;271:2177–84CrossRefGoogle ScholarPubMed
Ader, R, Kelley, KW. A global view of twenty years of brain, behavior, and immunity. Brain Behav Immun 2007;21:20–2CrossRefGoogle ScholarPubMed
Kozlowska, K. A stress-system model for functional neurological symptoms. J Neurol Sci 2017;383:151–2CrossRefGoogle ScholarPubMed
Pinto, PC, Marcelos, CM, Mezzasalma, MA, Osterne, FJ, de Melo Tavares de Lima, MA, Nardi, AE. Tinnitus and its association with psychiatric disorders: systematic review. J Laryngol Otol 2014;128:660–4CrossRefGoogle ScholarPubMed
Reynolds, P, Gardner, D, Lee, R. Tinnitus and psychological morbidity: a cross-sectional study to investigate psychological morbidity in tinnitus patients and its relationship with severity of symptoms and illness perceptions. Clin Otolaryngol Allied Sci 2004;29:628–34CrossRefGoogle ScholarPubMed
Folmer, RL, Griest, SE, Meikle, MB, Martin, WH. Tinnitus severity, loudness, and depression. Otolaryngol Head Neck Surg 1999;121:4851CrossRefGoogle ScholarPubMed
Trevis, KJ, McLachlan, NM, Wilson, SJ. Psychological mediators of chronic tinnitus: the critical role of depression. J Affect Disord 2016;204:234–40CrossRefGoogle ScholarPubMed
Hoge, CW, Terhakopian, A, Castro, CA, Messer, SC, Engel, CC. Association of posttraumatic stress disorder with somatic symptoms, health care visits, and absenteeism among Iraq war veterans. Am J Psychiatr 2007;164:150–3CrossRefGoogle ScholarPubMed
Roelofs, K, Pasman, J. Stress, childhood trauma, and cognitive functions in functional neurologic disorders. Handb Clin Neurol 2016;139:139–55CrossRefGoogle ScholarPubMed
Roelofs, K, Keijsers, GP, Hoogduin, KA, Naring, GW, Moene, FC. Childhood abuse in patients with conversion disorder. Am J Psychiatr 2002;159:1908–13CrossRefGoogle ScholarPubMed
Susskind, JM, Lee, DH, Cusi, A, Feiman, R, Grabski, W, Anderson, AK. Expressing fear enhances sensory acquisition. Nat Neurosci 2008;11:843–50CrossRefGoogle ScholarPubMed
Koteles, F, Witthoft, M. Somatosensory amplification - an old construct from a new perspective. J Psychosom Res 2017;101:19CrossRefGoogle ScholarPubMed
Song, JJ, Vanneste, S, De Ridder, D. Dysfunctional noise cancelling of the rostral anterior cingulate cortex in tinnitus patients. PLoS One 2015;10:e0123538CrossRefGoogle ScholarPubMed
Campbell, J, Bean, C, LaBrec, A. Normal hearing young adults with mild tinnitus: reduced inhibition as measured through sensory gating. Audiol Res 2018;8:214CrossRefGoogle ScholarPubMed
Seto, H, Nakao, M. Relationships between catastrophic thought, bodily sensations and physical symptoms. BioPsychoSocial Med 2017;11:28CrossRefGoogle ScholarPubMed
White, RW, Horvitz, E. Experiences with web search on medical concerns and self diagnosis. AMIA Annu Symp Proc 2009;696700Google ScholarPubMed
Vanneste, S, To, WT, De Ridder, D. Tinnitus and neuropathic pain share a common neural substrate in the form of specific brain connectivity and microstate profiles. Prog Neuropsychopharmacol Biol Psychiatry 2019;88:388400CrossRefGoogle Scholar
Howland, RH. Vagus nerve stimulation. Curr Behav Neurosci Rep 2014;1:6473CrossRefGoogle ScholarPubMed
Han, L, Pengfei, Z, Chunli, L, Zhaodi, W, Xindi, W, Qian, C et al. The effects of sound therapy in tinnitus are characterized by altered limbic and auditory networks. Brain Commun 2020;2:fcaa131CrossRefGoogle ScholarPubMed
Vukovic Cvetkovic, V, Jensen, RH. Neurostimulation for the treatment of chronic migraine and cluster headache. Acta Neurologica Scandinavica 2019;139:417CrossRefGoogle ScholarPubMed