Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T19:35:45.184Z Has data issue: false hasContentIssue false

Epidural application of ionomeric cement implants. Experimental and clinical results

Published online by Cambridge University Press:  29 June 2007

G. Geyer*
Affiliation:
Department of Otolaryngology, Municipal Hospital Solingen, Germany.
G. Baier
Affiliation:
Department of Otolaryngology, University of Wuerzburg, Germany.
J. Helms
Affiliation:
Department of Otolaryngology, University of Wuerzburg, Germany.
*
Address for correspondence: PD Dr. G. Geyer, ENT Department, Municipal Hospital, Gotenstr.1, 42653 Solingen, Germany. Fax: 0212/547-2670

Abstract

During setting and hardening, the hybrid bone substitute ionomeric cement (lonocem®) achieves a stable and durable bond with the apatite of the adjacent bone without interpository soft tissue. Fluid contact during setting results in the release of aluminium ions which may reach critical levels as high as 3000 μg/l. On epidural application it is, therefore, essential to prevent cement constituents from gaining access to the intradural space. After the cement has hardened, the presence of aluminium is demonstrable in the adjacent bone to a maximum depth of 20 μm (EDX microanalysis). In rabbits, epiduralplacement of freshly mixed cement causes slight thickening of the dura. There is reason to believe that human dura, with a thickness 10 times greater, is impermeableto components of the cement. After epidural application of the freshly mixed cement in the frontobasal and laterobasal regions and at the skull cap and petrous apex, 76 patients in all have been followed for up to 6.5 years. During this period no complications have arisen and functional (and cosmetic) results are promising. The availability of preformed implants (lonoroc®, lonocast®) permitted the peridural placement of minimal quantities of freshly mixed cement. These implants were fixed to localized sites on the adjacent calvarial bone by use of lonocem®. Notwithstanding the stringent manufacturer guidelines, there have been reports in the literature that during the vulnerable stage of setting neurotoxic aluminium ions were released into the dural space with a fatal outcome intwo cases. In view of potential intradural complications, such as may occur in case of dural leaks, it was considered that further application of the material adjacent to the dura was no longer warranted. The production of lonocem® was discontinued in May 1995.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asgari, S., Trost, H. A., Stolke, D. (1996) Die Behandlung einfacher und komplexer Schädeldefekte mittels Split calvaria cranioplasty. In Plastische und Wiederherstel-lungschirurgie. (Berghaus, A., ed.), Einhorn-Presse, Reinbek, pp 129133.Google Scholar
Behr, R., Roosen, K. (1996) Die Schädeldachplastik mit PMMA in der Neurochirurgie. In Chirurgie 1: Knochenersatz in der Mittelohr- und Schädelbasischirurgie. (Hagen, R., Geyer, G., Helms, J., eds.), Sympomed, München, pp 110115.Google Scholar
Beleites, E., Gudziol, H. (1996) Bioverit als Knochenersatzin der Kopf-Hals-Chirurgie. In Chirurgie 1: Knochenersarz in der Mittelohr- und Schädelbasischirurgie. (Hagen, R., Geyer, G., Helms, J., eds.),Sympomed, München, pp 8796.Google Scholar
Beleites, E., Rechenbach, G. (1992) implantologie in der Kopf-Hals-Chirurgie-gegenwärtiger Stand. In HNO-Praxis Heute. (Ganz, H.,Schätzle, W., eds.), Springer, Berlin, pp 169199.CrossRefGoogle Scholar
Berghaus, A. (1994) Implantate in der Hals-Nasen-Ohrenheilkunde, Kopf-und Halschirurgie. In Alloplastische Verfahren und mikrochirurgische Maβnahmen. (Rahmanzadeh, R., Scheller, E. E., eds.), Einhorn-Presse-Verlag, Reinbek, pp 152154.Google Scholar
Borrmann, I. (1996) In vitro und in-vivo-Untersuchungen zur Belastbarkeit und Haftfähigkeit von Glasionomerzement an Körpergeweben und anderen keramischen alloplastischen Materialien. Inaugural dissertation, Würzburg.Google Scholar
Brown, J. (1995) Safety evaluation of bone cement following craniotomy in dogs. Resumee, Opinion-Leader Meeting, Würzburg, Contribution No. 8, pp 15.Google Scholar
Elkins, C. H., Cameron, J. E. (1946) Cranioplasty with acrylic plates. Journal of Neurosurgery 3: 199205.CrossRefGoogle ScholarPubMed
Forth, W. (1995) Toxicologic evaluation of the release of Al3+ions out of ionomeric cement produced by the company IONOS. Resumee, Opinion-Leader Meeting, Würzburg.Google Scholar
Geyer, G. (1992) Glasionomerzement als Knochenersatzmaterial in der Ohrchirurgie. Babelegi, Pretoria, pp 153160.Google Scholar
Geyer, G. (1994) Modern techniques in reconstruction of dura and skullbase. In Skull Base Surgery. (Samii, M., ed), Karger, Basel, pp 604608.Google Scholar
Geyer, G. (1997) Ionomerzement als Knochenersatzmaterial im Mittelohr des Kaninchens. HNO 45: 222226.CrossRefGoogle Scholar
Geyer, G., Behr, R. (1994) Rekonstruktion der Kalotte und desStirnbeins mit ionomerem Knochenersatzmaterial (lonocem®, lonocast®). In Alloplastische Verfahren und mikrochirurgische Maβnahmen. (Rahmanzadeh, R., Scheller, E. E., eds.), Einhorn-Presse Verlag, Reinbek, p 612.Google Scholar
Geyer, G., Helms, J. (1992) Plastischer Verschluβ knöcherner Schädellücken mit einem ionomeren Knochenersatzmaterial. Otorhinolaryngologia Nova 2: 99104.Google Scholar
Geyer, G., Wiedenmann, M., Borrmann, I. (1994) Ionomerzement (lonocem®) als Knochenersatzmaterial in der plastisch-rekonstruktiven Schädelchirurgie – tierexperimentelle Untersuchungen und klinische Ergebnisse. Plastisch-rekonstruktive Maβnahmen bei Knochen- und Weichteildefekten (Zilch, H., Schumann, E., eds.), Thieme, Stuttgart, pp 156157.Google Scholar
Grote, J. (1996) Der Einsatz von Calciumphosphatkeramik in der rekonstruktiven Chirurgie des Mittelohres und der Schädelbasis. In Chirurgie 1: Knochenersatz in der Mittelohr- und Schädelbasischirurgie. (Hagen, R., Geyer, G., Helms, J., eds.), Sympomed, Munchen, pp 7980.Google Scholar
Hantson, P. H., Mahieu, P., Gersdorff, M., Sindic, D. J. M., Lauwerys, R. (1994) Encephalopathy with seizures after use of alumunium-containing bone cement. Lancet 344: 1647.CrossRefGoogle ScholarPubMed
Helms, J., Geyer, G. (1993) Alloplastic materials in skull base reconstruction. In Surgery of Cranial Base Tumors. (Sekhar, L. N., Janecka, I. P., eds.), Raven Press, New York, pp 461469.Google Scholar
Helms, J., Geyer, G. (1994) Closure of petrous apex of thetemporal bone with ionomer cement following translabyrinthine removal of an acoustic neuroma. Journal of Laryngology and Otology 108: 202205.CrossRefGoogle Scholar
Holmes, R. E., Hagler, H. K. (1988) Porous hydroxyapatite as a bone graft substitute in cranial reconstruction. A histometric study. Plastic and Reconstructive Surgery 81: 662671.CrossRefGoogle ScholarPubMed
lonos medizinische Produkte GmbH and Co. KG (1995) Fachinformation Knochenersatzmaterial V-O CEM. Seefeld.Google Scholar
Jonck, L. M. (1995) personal communication.Google Scholar
Jonck, L. M., Grobbelaar, C. J., Strating, H. (1989a) The biocompatibility of glass-ionomer cement in joint replacement. Bulk testing. Clinical Materials 4: 85107.CrossRefGoogle Scholar
Jonck, L. M., Grobbelaar, C. J., Strating, H. (1989b) Biological evaluation of glass-ionomer cement (KETAC-O) as aninterface material in total joint replacement. A screening test. Clinical Materials 4; 201224.CrossRefGoogle Scholar
Kübler, N. (1996) Osteoinduktion: Grundlagen und Klinik. In Chirurgie 1: Knochenersatz in der Mittelohr- und Schädelbasischirurgie. (Hagen, R., Geyer, G., Helms, J., eds.), Sympomed, München, pp 1827.Google Scholar
Kübler, N., Pistner, H., Meier, J., Reuther, J. (1994) Osteoinduktive Knochenimplantate – experimentelle Grundlagen und klinischerEinsatz. In Alloplastische Verfahren und mikrochirurgische Maβnahmen. (Rahmanzadeh, R., Scheller, E. E., eds.), Einhorn-Presse, Reinbek, pp 4347.Google Scholar
Lübben, B., Geyer, G., Pahnke, J. (1996) Zellkulturversuche zur Toxizität von frisch abgebundenem lonomer-Zement. Die Wirkung aus auschärtendem Ionomerzement auf 3T3-Mäusefibroblasten. In Chirurgie 1: Knochenersatz in der Mittelohr- und Schädelbasischirurgie. (Hagen, R., Geyer, G., Helms, J., eds.), Sympomed, München, pp 155159.Google Scholar
Manson, P. N. (1986) Frontal cranioplasty: Risk factors and choiceof cranial vault reconstructive materials. Plastic and Reconstructive Surgery 77: 888900.CrossRefGoogle Scholar
Ramsden, R. T., Herdman, R. C. D., Lye, R. H. (1992) lonomeric bone cement in neuro-otological surgery. Journal of Laryngology andOtology 106: 949953.CrossRefGoogle Scholar
Renard, J. L., Felten, D., Bèquet, D. (1994) Post-otoneurosurgery aluminium encephalopathy. Lancet 344: 6364.CrossRefGoogle ScholarPubMed
Reusche, E. (1995) No pathological increase of aluminium with regular use of ionomeric cement. Resumee, Opinion-Leader Meeting Würzburg, Contribution No. 7, pp 12.Google Scholar
Schmitz, H. J. (1992) lonocast for complex skull defects. Vortrag, ENT-Opinionleader Meeting, Seefeld.Google Scholar
Schmitz, H. J., Tolxdorff, T., Honsbrok, J., Harders, A., LaBorde, G., Gilsbach, J. (1990) Computer-assisted 3-D-reconstruction and interactive manufacturing of alloplastic cranial and maxillofacial implants.In SCAR 90 Computer Applications to Assist Radiology. (Arneson, R. L., Friedenberg, R. M., eds.), Symposia Foundation, pp 479485.Google Scholar
Schwab, U. (1996) Glasionomerzement unter Radiatio in vitro und am Tiermodell. In Chirurgie 1: Knochenersatz in der Mittelohr- und Schädelbasischirurgie. (Hagen, R., Geyer, G., Helms, J., eds.), Sympomed, München, pp 160164.Google Scholar
Seyer, H., Farmand, M. (1994) Autogener Schädelknochen zur craniofacialen Rehabilitation. In Alloplastische Verfahren und mikrochirurgische Maβnahmen. (Rahmanzadeh, R., Scheller, E. E., eds.), Einhorn-Presse, Reinbek, pp 3942.Google Scholar
Städtgen, A. (1994) Tierexperimentelle Untersuchungen zum Verhalten von Glasionmerzement in der Kopf-Hals-Region–eine histologische Studie an Pavianen (Papio ursinus). Inauguraldissertation, Würzburg.Google Scholar
Steimlé, R., Bourghli, A., Jacquet, G., Godard, J., Chico, F., Zaitouni, A. (1986) Cranioplasty with acrylicmethyl methacrylate resin. Zentralblatt für Neurochirurgie 47: 2427.Google ScholarPubMed
Swenson, R. W., Koopmann, C. F. Jr. (1984) Grafts and implants. Otolaryngology Clinics of North America 17: 413428.CrossRefGoogle ScholarPubMed
Thallemer, J., Draf, W. (1994) Ionomerzement (lonocem®) alsalloplastisches Material in der Kopf- und Hals-Chirurgie. In Alloplastische Verfahren und mikrochirurgische Maβnah-men. (Rahmanzadeh, R., Scheller, E. E., eds.), EinhornPresse, Reinbek, pp 408410.Google Scholar
Weber, A., May, A. (1996) Stellenwert des Ionomerzements bei osteoplastischen Stirnhohleneingriffen. Otorhinolaryngologia Nova 6: 211217.CrossRefGoogle Scholar
Wilson, A. D., McLean, J. W. (1988) Glass-ionomer cement. Quintessence, Chicago, pp 13–10, 21–56, 131–199.Google Scholar