Published online by Cambridge University Press: 17 May 2019
To investigate whether oxytocin can prevent ototoxicity related to acoustic trauma.
Twenty-eight rats were divided into four groups: noise (group 1), control (group 2), noise plus oxytocin (group 3), and oxytocin (group 4). Intratympanic oxytocin was administered on days 1, 2, 4, 6, 8 and 10 in groups 3 and 4. Groups 1 and 3 were exposed to acoustic trauma. Distortion product otoacoustic emission and auditory brainstem response testing were performed in all groups.
In group 1, auditory brainstem response thresholds increased significantly after acoustic trauma. In group 3, auditory brainstem response thresholds increased significantly on day 1 after acoustic trauma, but there were no significant differences between thresholds at baseline and on the 7th and 21st days. In group 1, significant differences were observed between distortion product otoacoustic emission signal-to-noise ratios measured before and on days 1, 7 and 21 after acoustic trauma. In group 3, no significant differences were observed between the distortion product otoacoustic emission signal-to-noise ratios measured before and on days 7 and 21 after acoustic trauma.
Oxytocin had a therapeutic effect on rats exposed to acoustic trauma in this experiment.
Dr F C Akin Ocal takes responsibility for the integrity of the content of the paper
Presented at the ENT World Congress, 24–28 June 2017, Paris, France.