Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T04:27:02.544Z Has data issue: false hasContentIssue false

Early ossification within the human fetal otic capsule: morphological and microanalytical findings

Published online by Cambridge University Press:  29 June 2007

F. Declau*
Affiliation:
ENT Department, University of Antwerp, Wilrijk, Belgium
W. Jacob
Affiliation:
Electron Microscopy Department, University of Antwerp, Wilrijk, Belgium
W. Dorrine
Affiliation:
Chemistry Department, University of Antwerp, Wilrijk, Belgium
B. Appel
Affiliation:
Neuroradiology Department, Middelheim Hospital, Antwerp, Belgium
J. Marquet
Affiliation:
ENT Department, University of Antwerp, Wilrijk, Belgium
*
Dr. F. Declau ENT research laboratoryUniversity of AntwerpUniversiteitsplein 1Gebouw T, 6de V B-2610 WilrijkBelgium

Abstract

Besides the use of conventional techniques such as light and polarization microscopy, the present paper proposes the combined use of transmission electron microscopy, secondary and backscattered electron imaging, energy dispersive X-ray analysis and computed tomography for the diagnostic evaluation of ear pathology in the human fetus. These methods were used to revisit the primary calcification front of the fetal otic capsule between 16 and 23 weeks gestational age. Ultramicroscopic evaluation demonstrates similar fetal bone formation to that found in other bones of the human fetus. The formation of the endosteal and periosteal layers is a typical example of early intra-membranous ossification. The enchondral layer is made up of fibrillar bone, laid down around the calcified cartilage remnants. Microchemical analysis indicates a significantly higher Ca/P ratio in the endochondral layer with respect to the endosteum and periosteum. The consequences of a lower Ca/P ratio in the endosteal layer are discussed in view of calcium homeostasis and inner ear function.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, D., Kupke, K. G., Ingram, P., Roggli, V. L., Shelburne, J. D. (1985) Microprobe analysis in human pathology. Scanning Electron Microscopy, 2: 659680.Google Scholar
Bast, T. H. (1930) Ossification of the otic capsule in human fetuses. Carnegie Contributions to Embryology, 121: 5382.Google Scholar
Berger, G., Hawke, M., Johnson, A., Proops, D. (1985) Histopathology of the temporal bone in osteogenesis imperfecta congenita: a report of five cases. Laryngoscope, 95: 193199.CrossRefGoogle Scholar
Bernard, G. W. and Peace, D. C. (1969) An electron microscopic study of initial intramembranous ossification. American Journal of Anatomy, 125: 271290.CrossRefGoogle Scholar
Boyde, A. (1972) SEM studies of bone. In: The biochemistry and physiology of bone (Bourne, G. H., ed), pp 259310. Academic press, New York.CrossRefGoogle Scholar
Boyde, A., Maconnachie, E., Reid, S. A., Delling, G., Mundy, G. R. (1986) Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scanning Electron Microscopy, 4: 15371554.Google Scholar
Bretlau, P. (1971) Otosclerosis: Electron microscopic studies of biopsies from the labyrinthine capsule. Archives of Otolaryngology, 93: 551561.CrossRefGoogle ScholarPubMed
Causse, J., Chevance, L. G. and Shambaugh, G. E. (1973) Bases biologique d'un traitement fluore de l'otospongiose. Annales d'Otolaryngologie et Chirugie Cervicofaciale, 90: 139160.Google Scholar
Chole, R. A. and Tinling, S. P. (1987) Fine morphology of bony dysplasia of the murine ear. American Journal of Otolaryngology, 8: 325331.CrossRefGoogle ScholarPubMed
Declau, F., Appel, B., Marquet, J. (1985) Morphogenesis of the inner ear: correlation between CT findings and macrosections. Acta Otorhinolaryngologica Belgica, 39: 653670.Google ScholarPubMed
Declau, F., Moeneclaey, L., Forton, G., Marquet, J. (1988) Differentiation of cartilage and bone in human fetal temporal bones with Luxol fast blue stain. Archives of Otorhinolaryngology, 245: 218220.CrossRefGoogle ScholarPubMed
Friedmann, I. (1974) Pathology of the ear. Blackwell, Oxford.Google Scholar
Gardner, E. (1972) Osteogenesis in the human embryo and fetus. In: The biochemistry and physiology of bone (Bourne, G. H., ed), pp 77117. Academic press, New York.Google Scholar
Goldstein, J. I. and Yakowitz, H. (1976) Practical scanning electron microscopy. Plenum Press, New York.Google Scholar
Holtrop, M. E. (1972) The ultrastructure of the epiphyseal plate II: the hypertrophic chondrocyte. Calcified Tissue Research, 9: 140151.CrossRefGoogle ScholarPubMed
Iurato, S. (1987) Human temporal bone histopathology in progress. In: Immunobiology, histopathology, tumor immunology in otorhinolaryngology (Veldman, J. E., ed). pp 143149. Kugler Publications, Amsterdam.Google Scholar
Kelemen, G. and Alonso, A. (1980) Penetration of the cochlear endost by the fibrous component of the otosclerotic focus. Acta Otolaryngologica, 89: 453458.CrossRefGoogle ScholarPubMed
Marquet, J. and Declau, F. (1988) Congenital middle ear malformations. Acta Otorhinolaryngologica Belgica, 42: 117302.Google ScholarPubMed
McLean, F. C. and Urist, M. R. (1968) Crystal structure and chemical composition of bone mineral. In: Fundamentals of the physiology of skeletal tissue. University of Chicago Press, Chicago, pp 5671.Google Scholar
Menser, M. A., Forrest, S. M. (1974) Rubella—high risk incidence of defects in children considered normal at birth. Medical Journal of Australia, 1: 123126.CrossRefGoogle Scholar
Meyer, A. M. (1988) Imbalanced calcium homeostasis and endolymphatic hydrops. Acta Otolaryngologica Supplement 460: 1827.CrossRefGoogle Scholar
Myers, E. and Stool, S. (1969) The temporal bone in osteopetrosis. Archives of Otolaryngology, 89: 460469.CrossRefGoogle ScholarPubMed
Nordin, B. E. C. (1976) Calcium, phosphorus and magnesium metabolism. Churchill Livingstone, Edinburgh, 683 pp.Google Scholar
Rasmussen, H. and Bordier, P. (1974) The physiological and cellular basis of metabolic bone disease. Williams & Wilkins Company, Baltimore, 364 pp.Google Scholar
Resnick, D., Manolagas, S. C., Niwayama, G. (1988) Histogenesis, anatomy and physiology of bone. In: Diagnosis of bone and joint disorders (Resnick, D., Niwayama, G., eds), pp 19411973. WB Saunders Company, Philadelphia.Google Scholar
Schuknecht, H. F. (1974) Pathology of the ear. Harvard University Press, Cambridge, Mass., 250 p.Google Scholar
Van der Wouden, A. (1971) Botziekten in het os temporale met gehoorstoornissen. Proefschrift, s'Gravenhage.Google Scholar
Viraspongse, C., Shapiro, R, Sarwar, M., Bhimani, S., Crelin, E. S. (1985) Computed tomography in the study of the development of the skull base. Journal of Computer Assisted Tomography, 9(1): 8594.CrossRefGoogle Scholar