Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T19:53:58.709Z Has data issue: false hasContentIssue false

Auditory cortical activation and speech perception in cochlear implant users

Published online by Cambridge University Press:  22 May 2007

Abstract

Cochlear implantation is generally accepted as a successful means of restoring auditory sensation to profoundly deaf individuals. Although most patients can expect a satisfactory outcome following implantation, some have poor speech perception outcomes. This investigation used [18F]-fluorodeoxyglucose positron emission tomography to measure cortical activity resulting from auditory stimulation in seven ‘good’ and four ‘poor’ cochlear implant recipients. Activations were significantly greater in both the primary and association cortices in the good compared with the poor implant users. We suggest that the ability to access the more specialised speech processing abilities of the auditory association cortices helps determine outcome following cochlear implantation.

Type
Research Article
Copyright
Copyright © JLO (1984) Limited 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Makhdoum, MJ, Snik, AF, van den Broek, P. Cochlear implantation: a review of the literature and the Nijmegen results. J Laryngol Otol 1997;111:1008–17CrossRefGoogle ScholarPubMed
2 Mawman, DJ, Bhatt, YM, Green, KM, O'Driscoll, MP, Saeed, SR, Ramsden, RT. Trends and outcomes in the Manchester adult cochlear implant series. Clin Otolaryngol 2004;29:331–9CrossRefGoogle ScholarPubMed
3 Summerfield, AQ, Marshall, DH. Cochlear Implantation in the UK 1990–1994. Report by the MRC Institute of Hearing Research on the Evaluation of the National Cochlear Implant Programme. London: HMSO, 1995Google Scholar
4 Summerfield, AQ, Marshall, DH, Davis, AC. Cochlear implantation: demand, costs, and utility. Ann Otol Rhinol Laryngol Suppl 1995;166:245–8CrossRefGoogle ScholarPubMed
5 Valimaa, TT, Sorri, MJ, Lopponen, HJ. Speech perception and functional benefit after multichannel cochlear implantation. Scand Audiol Suppl 2001;52:45–710.1080/010503901300007038CrossRefGoogle Scholar
6 Valimaa, TT, Sorri, MJ, Lopponen, HJ. The effect of a multichannel cochlear implant on phoneme perception. Scand Audiol Suppl 2001;52:51–3CrossRefGoogle Scholar
7 Gibson, WP, Rennie, M, Psarros, C. Outcome after cochlear implantation and auditory verbal training in terms of speech perception, speech production and language. Adv Otorhinolaryngol 2000;57:250–3Google ScholarPubMed
8 van Dijk, JE , van Olphen, AF, Langereis, MC, Mens, LH, Brokx, JP, Smoorenburg, GF. Predictors of cochlear implant performance. Audiology 1999;38:109–16CrossRefGoogle ScholarPubMed
9 Alavi, A, Reivich, M, Greenberg, J, Hand, P, Rosenquist, A, Rintelmann, W et al. Mapping of functional activity in brain with 18F-fluoro-deoxyglucose. Semin Nucl Med 1981;11:2431CrossRefGoogle ScholarPubMed
10 Greenberg, JH, Reivich, M, Alavi, A, Hand, P, Rosenquist, A, Rintelmann, W et al. Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique. Science 1981;212:678–80CrossRefGoogle ScholarPubMed
11 Phelps, ME, Huang, SC, Hoffman, EJ, Selin, C, Sokoloff, L, Kuhl, DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6:371–88CrossRefGoogle ScholarPubMed
12 Grafton, ST. PET: activation of cerebral blood flow and glucose metabolism. Adv Neurol 2000;83:87103Google ScholarPubMed
13 Deggouj, N, Gersdorff, M. Imaging and cochlear implant. Acta Otorhinolaryngol Belg 1998;52:133–43Google ScholarPubMed
14 Herzog, H, Lamprecht, A, Kuhn, A, Roden, W, Vosteen, KH, Feinendegen, LE. Cortical activation in profoundly deaf patients during cochlear implant stimulation demonstrated by H2(15)O PET. J Comput Assist Tomogr 1991;15:369–75CrossRefGoogle ScholarPubMed
15 Hirano, S, Naito, Y, Okazawa, H, Kojima, H, Honjo, I, Ishizu, K et al. Cortical activation by monaural speech sound stimulation demonstrated by positron emission tomography. Exp Brain Res 1997;113:7580CrossRefGoogle ScholarPubMed
16 Naito, Y, Hirano, S, Okazawa, H, Takahashi, H, Ishizu, K, Fujiki, N et al. Central auditory processing of speech in cochlear implant users demonstrated by positron emission tomography. Adv Otorhinolaryngol 1997;52:1923Google ScholarPubMed
17 Naito, Y, Okazawa, H, Honjo, I, Hirano, S, Takahashi, H, Shiomi, Y et al. Cortical activation with sound stimulation in cochlear implant users demonstrated by positron emission tomography. Brain Res Cogn Brain Res 1995;2:207–14CrossRefGoogle ScholarPubMed
18 Belin, P, Zatorre, RJ, Lafaille, P, Ahad, P, Pike, B. Voice-selective areas in human auditory cortex. Nature 2000;403:309–12CrossRefGoogle ScholarPubMed
19 Howard, D, Patterson, K, Wise, R, Brown, WD, Friston, K, Weiller, C et al. The cortical localization of the lexicons. Positron emission tomography evidence. Brain 1992;115:1769–82CrossRefGoogle ScholarPubMed
20 Suzuki, M, Kitano, H, Kitanishi, T, Itou, R, Shiino, A, Nishida, Y et al. Cortical and subcortical activation with monaural monosyllabic stimulation by functional MRI. Hear Res 2002;163:3745CrossRefGoogle ScholarPubMed
21 Salvi, R, Lockwood, A, Frisina, R, Coad, M, Wack, D, Frisina, D. PET imaging of the normal human auditory system: responses to speech in quiet and in background noise. Hear Res 2002;170:9610610.1016/S0378-5955(02)00386-6CrossRefGoogle ScholarPubMed
22 Naito, Y, Tateya, I, Fujiki, N, Hirano, S, Ishizu, K, Nagahama, Y et al. Increased cortical activation during hearing of speech in cochlear implant users. Hear Res 2000;143:139–46CrossRefGoogle ScholarPubMed
23 Fujiki, N, Naito, Y, Hirano, S, Kojima, H, Kamoto, Y, Nishizawa, S et al. Influence of speech-coding strategy on cortical activity in cochlear implant users: a positron emission tomographic study. Acta Otolaryngol 1998;118:797802Google ScholarPubMed
24 Fujiki, N, Naito, Y, Hirano, S, Kojima, H, Shiomi, Y, Nishizawa, S et al. Cortical activity and speech perception performance in cochlear implant users. Adv Otorhinolaryngol 2000;57:32–5Google ScholarPubMed
25 Green, KM, Julyan, PJ, Hastings, DL, Ramsden, RT. Auditory cortical activation and speech perception in cochlear implant users: effects of implant experience and duration of deafness. Hear Res 2005;205:184–92CrossRefGoogle ScholarPubMed
26 Tobey, EA, Devous, MD Sr, Buckley, K, Cooper, WB, Harris, TS, Ringe, W et al. Functional brain imaging as an objective measure of speech perception performance in adult cochlear implant users. Int J Audiol 2004;43(suppl 1):S52–6Google ScholarPubMed
27 Talairach, J, Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme, 1988Google Scholar
28 Rorden, C, Brett, M. Stereotaxic display of brain lesions. Behav Neurol 2000;12:191200CrossRefGoogle ScholarPubMed
29 Battmer, RD, Gupta, SP, Allum-Mecklenburg, DJ, Lenarz, T. Factors influencing cochlear implant perceptual performance in 132 adults. Ann Otol Rhinol Laryngol Suppl 1995;166:185–7Google ScholarPubMed
30 Francis, HW, Pulsifer, MB, Chinnici, J, Nutt, R, Venick, HS, Yeagle, JD et al. Effects of central nervous system residua on cochlear implant results in children deafened by meningitis. Arch Otolaryngol Head Neck Surg 2004;130:604–11CrossRefGoogle ScholarPubMed
31 Frost, JA, Binder, JR, Springer, JA, Hammeke, TA, Bellgowan, PS, Rao, SM et al. Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain 1999;122:19920810.1093/brain/122.2.199CrossRefGoogle ScholarPubMed
32 Parving, A, Christensen, B, Salomon, G, Pedersen, CB, Friberg, L. Regional cerebral activation during auditory stimulation in patients with cochlear implants. Arch Otolaryngol Head Neck Surg 1995;121:438–44CrossRefGoogle ScholarPubMed
33 Mortensen, MV, Mirz, F, Gjedde, A. Restored speech comprehension linked to activity in left inferior prefrontal and right temporal cortices in postlingual deafness. Neuroimage 2006;31:842–52CrossRefGoogle ScholarPubMed
34 Miyamoto, RT, Wong, D, Pisoni, DB, Hutchins, G, Sehgal, M, Fain, R. Positron emission tomography in cochlear implant and auditory brain stem implant recipients. Am J Otol 1999;20:596601Google ScholarPubMed
35 Wong, D, Miyamoto, RT, Pisoni, DB, Sehgal, M, Hutchins, GD. PET imaging of cochlear-implant and normal-hearing subjects listening to speech and nonspeech. Hear Res 1999;132:344210.1016/S0378-5955(99)00028-3CrossRefGoogle ScholarPubMed
36 Binder, JR, Frost, JA, Hammeke, TA, Bellgowan, PS, Springer, JA, Kaufman, JN et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 2000;10:512–28CrossRefGoogle ScholarPubMed
37 Jancke, L, Wustenberg, T, Scheich, H, Heinze, HJ. Phonetic perception and the temporal cortex. Neuroimage 2002;15:733–46CrossRefGoogle ScholarPubMed
38 Blamey, P, Arndt, P, Bergeron, F, Bredberg, G, Brimacombe, J, Facer, G et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiol Neurootol 1996;1:293306Google ScholarPubMed
39 Gantz, BJ, Woodworth, GG, Knutson, JF, Abbas, PJ, Tyler, RS. Multivariate predictors of success with cochlear implants. Adv Otorhinolaryngol 1993;48:153–67Google ScholarPubMed
40 Ito, J, Sakakibara, J, Iwasaki, Y, Yonekura, Y. Positron emission tomography of auditory sensation in deaf patients and patients with cochlear implants. Ann Otol Rhinol Laryngol 1993;102:797801CrossRefGoogle ScholarPubMed
41 Lee, JS, Lee, DS, Oh, SH, Kim, CS, Kim, JW, Hwang, CH et al. PET evidence of neuroplasticity in adult auditory cortex of postlingual deafness. J Nucl Med 2003;44:1435–9Google ScholarPubMed
42 Albu, S, Babighian, G. Predictive factors in cochlear implants. Acta Otorhinolaryngol Belg 1997;51:1116Google ScholarPubMed
43 Blamey, PJ, Pyman, BC, Gordon, M, Clark, GM, Brown, AM, Dowell, RC et al. Factors predicting postoperative sentence scores in postlinguistically deaf adult cochlear implant patients. Ann Otol Rhinol Laryngol 1992;101:342–8CrossRefGoogle ScholarPubMed
44 Gantz, BJ, Woodworth, GG, Knutson, JF, Abbas, PJ, Tyler, RS. Multivariate predictors of audiological success with multichannel cochlear implants. Ann Otol Rhinol Laryngol 1993;102:909–1610.1177/000348949310201201CrossRefGoogle ScholarPubMed
45 Khan, AM, Whiten, DM, Nadol, JB Jr, Eddington, DK. Histopathology of human cochlear implants: correlation of psychophysical and anatomical measures. Hear Res 2005;205:8393CrossRefGoogle ScholarPubMed
46 Lee, DS, Lee, JS, Oh, SH, Kim, SK, Kim, JW, Chung, JK et al. Cross-modal plasticity and cochlear implants. Nature 2001;409:149–50CrossRefGoogle ScholarPubMed
47 Lee, HJ, Kang, E, Oh, SH, Kang, H, Lee, DS, Lee, MC et al. Preoperative differences of cerebral metabolism relate to the outcome of cochlear implants in congenitally deaf children. Hear Res 2005;203:29Google Scholar
48 Mortensen, MV, Madsen, S, Gjedde, A. Use of time differences in normal hearing – cortical processing of promontorial stimuli. Hear Res 2005;205:94101CrossRefGoogle ScholarPubMed
49 Mortensen, MV, Madsen, S, Gjedde, A. Cortical responses to promontorial stimulation in postlingual deafness. Hear Res 2005;209:3241CrossRefGoogle ScholarPubMed