Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T00:00:21.219Z Has data issue: false hasContentIssue false

Nasal airflow in inspiration and expiration

Published online by Cambridge University Press:  29 June 2007

Laura Viani
Affiliation:
Liverpool
Andrew S. Jones*
Affiliation:
Liverpool
Ray Clarke
Affiliation:
Liverpool
*
A. S. Jones, University Department of Otorhinolaryngology, Royal Liverpool Hospital, PO Box No 147, Prescot Street, Liverpool L69 3BX.

Abstract

Inspiratory and expiratory airflow rates were measured in 30 subjects during quiet respiration (at a pressure gradient of 150 Pa) and at peak flow rates.

For low flow rates airflow rate was greater for inspiration than for expiration. Conversely at peak flow rates flow was greatest during expiration. Thus there was a reversal in the phase relationship between inspiration and expiration as flow rate increased.

It was also found that peak inspiratory flow rate correlated better with values for nasal resistance than did peak expiratory flow rate. Flow rate measured by rhinomanometry during quiet respiration was more sensitive to physiologically induced changes in nasal resistance than was peak flow rate.

The findings are discussed with reference to previous work on the physiology of nasal airflow.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abour, P., Bilgen, E., Girardin, M. (1985) Experimental study of velocity fields in a human nasal fossa by laser anemometry. Rhinology, 23: 201207.Google Scholar
Benson, M. K. (1971) Maximum nasal inspiratory flow rate. Its use in assessing the effect of pseudoephedrine in vasomotor rhinitis. European Journal of Clinical Pharmacology, 3: 182184.CrossRefGoogle Scholar
Bridger, G. P., Proctor, D. F. (1970) Maximum nasal inspiratory flow and nasal resistance. Annals of Otolaryngology Rhinologyand Laryngology, 79: 481486.CrossRefGoogle ScholarPubMed
Clement, P. A. R. (1984) Committee report on standardisation of rhinomanometry. Rhinology, 22: 151155.Google ScholarPubMed
Davies, H. J. (1978) Measurement of nasal patency using a Vitalograph. Clinical Allergy, 8: 517523.CrossRefGoogle ScholarPubMed
Eccles, R. (1978) The central rhythm of the nasal cycle. Ada Otolaryngologica, 86: 464468.CrossRefGoogle ScholarPubMed
Frolund, L., Madsen, F., Mygind, N., Nielsen, N. H., Svendsen, U. G., Weeke, B. (1987) Comparison between different techniques for measuring nasal patency in a group of unselected patients. Ada Otolaryngologica, 104: 175179.CrossRefGoogle Scholar
Gleeson, M. J., Youlten, L. J. F., Shelton, D. M., Siodlak, M. Z., Eiser, N. M., Wengraf, C. L. (1986) Assessment of nasal airway patency: a comparison of four methods. Clinical Otolaryngolgy, 11: 99107.CrossRefGoogle ScholarPubMed
Haight, J. S. J., Cole, P. (1983) The site and function of the nasal valve. Laryngoscope, 93: 4955.CrossRefGoogle ScholarPubMed
Hyatt, R. E., Wilcox, R. E. (1963) The pressure-flow relationships of the intrauthoracic airways in man. Journal of Clinical Investigation, 42: 2939.CrossRefGoogle ScholarPubMed
Jones, A. S., Lancer, J. M., Stevens, J. C., Beckingham, E. (1987) Nasal resistance to airflow (Its measurement, reproducibility and normal parameters). Journal of Laryngology and Otology, 101: 800808.CrossRefGoogle ScholarPubMed
Jones, A. S., Lancer, J. M. (1987) Rhinomanmetry. Clinical Otolaryngology, 12: 233236.CrossRefGoogle Scholar
Kenyon, G. S. (1987) Phase variation in nasal airway resistance as assessed by active anterior rhinomanometry. Journal of Laryngology and Otology, 101: 910916.CrossRefGoogle ScholarPubMed
Mink, P. J. (1920) Phsiologie der oberen luftwete, Leipzig. Cited by, Uddstromer M. (1940) Nasal respiration. Acta Otolaryngologica, supplement 42.Google Scholar
Rohrer, F. (1915) Der stromungwiderstand in den menschlichen atemwegenund der einflussder unregelmassigen verzweigung der bronchialsystems auf den atmungsverlauf verschiedenen lungenbezirken. Pflugers Archiv fur die Gesamte Physiologie des Menschen und der Tiere, 162: 225295.CrossRefGoogle Scholar
Santiago-Diez de Bonilla, J., McCaffrey, T. V., Kern, E. B. (1986) The nasal valve: a rhinomanometric evaluation of maximum nasal inspiratory flow and pressure curves. Annals of Otology Rhinology and Laryngology, 95: 229232.CrossRefGoogle Scholar
Stevens, J. C., Jones, A. S., Lancer, J. M., Beckingham, E. (1987) A microcomputer based procedure for carrying out rhinomanometry. Journal of Medical Engineering and Technology, 11: 278287.CrossRefGoogle ScholarPubMed
Strohl, K. P., O'Cain, C. F., Slutsky, A. S. (1982) Alae nasi activation and nasal resistance in healthy subjects. Journal of Applied Physiology, 52: 14321437.CrossRefGoogle ScholarPubMed
Taylor, G., Macneil, A. R., Freed, D. L. J. (1973) Assessing degree of nasal patency by measuring peak expiratory flow rate through the nose. Journal of Allergy and Clinical Immunology, 52: 193198.CrossRefGoogle ScholarPubMed
Tonndorf, J. (1939) Atemluft in der menschlichen nase. Archiv für Ohren Nasen Kehlkopheilkunde, 146: 4163.CrossRefGoogle Scholar
Youlten, L. J. F. (1983) Nasal airway patency measurement in the assessment of rhinitis therapy. In: Arbeiten Aus Dem Paul-Ehrlich-Instituit, Dem Georg-Speyer-Haus Und dem Ferdinand-Blum-Instituit. Brede, H. D., Going, H., Schaeffer, M. Eds. Gustav Fisher Verlag, Stuttgart.Google Scholar