Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:26:23.627Z Has data issue: false hasContentIssue false

Flexibility within the middle ears of vertebrates

Published online by Cambridge University Press:  12 November 2012

M J Mason*
Affiliation:
Department of Physiology, Development and Neuroscience, University of Cambridge, UK
M R B Farr
Affiliation:
Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
*
Address for correspondence: Dr Matthew J Mason, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK Fax: +44 (0)1223 333 840 E-mail: [email protected]

Abstract

Introduction and aims:

Tympanic middle ears have evolved multiple times independently among vertebrates, and share common features. We review flexibility within tympanic middle ears and consider its physiological and clinical implications.

Comparative anatomy:

The chain of conducting elements is flexible: even the ‘single ossicle’ ears of most non-mammalian tetrapods are functionally ‘double ossicle’ ears due to mobile articulations between the stapes and extrastapes; there may also be bending within individual elements.

Simple models:

Simple models suggest that flexibility will generally reduce the transmission of sound energy through the middle ear, although in certain theoretical situations flexibility within or between conducting elements might improve transmission. The most obvious role of middle-ear flexibility is to protect the inner ear from high-amplitude displacements.

Clinical implications:

Inter-ossicular joint dysfunction is associated with a number of pathologies in humans. We examine attempts to improve prosthesis design by incorporating flexible components.

Type
Review Article
Copyright
Copyright © JLO (1984) Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Merchant, SN, Ravicz, ME, Voss, SE, Peake, WT, Rosowski, JJ. Middle ear mechanics in normal, diseased and reconstructed ears. J Laryngol Otol 1998;112:715–31CrossRefGoogle ScholarPubMed
2 Clack, JA. Patterns and processes in the early evolution of the tetrapod ear. J Neurobiol 2002;53:251–64CrossRefGoogle ScholarPubMed
3 Lombard, RE, Bolt, JR. Evolution of the tetrapod ear: an analysis and reinterpretation. Biol J Linn Soc 1979;11:1976 CrossRefGoogle Scholar
4 Clack, JA. The evolution of tetrapod ears and the fossil record. Brain Behav Evol 1997;50:198212 CrossRefGoogle ScholarPubMed
5 Manley, GA. An evolutionary perspective on middle ears. Hear Res 2010;263:38 CrossRefGoogle ScholarPubMed
6 Clack, JA, Allin, E. The evolution of single- and multiple-ossicle ears in fishes and tetrapods. In: Manley, GA, Popper, AN, Fay, RR, eds. Evolution of the Vertebrate Auditory System. New York: Springer; 2004;128–63CrossRefGoogle Scholar
7 Lombard, RE. The structure of the amphibian auditory periphery: a unique experiment in terrestrial hearing. In: Popper, AN, Fay, RR, eds. Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, 1980;121–38CrossRefGoogle Scholar
8 Bolt, JR, Lombard, RE. Evolution of the amphibian tympanic ear and the origin of frogs. Biol J Linn Soc 1985;24:8399 CrossRefGoogle Scholar
9 Maier, W. Phylogeny and ontogeny of mammalian middle ear structures. Neth J Zool 1990;40:5574 CrossRefGoogle Scholar
10 Allin, EF. Evolution of the mammalian middle ear. J Morphol 1975;147:403–38CrossRefGoogle ScholarPubMed
11 Meng, J, Wang, Y, Li, C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 2011;472:181–5CrossRefGoogle ScholarPubMed
12 Ji, Q, Luo, Z-X, Zhang, X, Yuan, C-X, Xu, L. Evolutionary development of the middle ear in Mesozoic therian mammals. Science 2009;326:278–81CrossRefGoogle ScholarPubMed
13 Rich, TH, Hopson, JA, Musser, AM, Flannery, TF, Vickers-Rich, P. Independent origins of middle ear bones in monotremes and therians. Science 2005;307:910–14CrossRefGoogle ScholarPubMed
14 Rougier, GW, Forasiepi, AM, Martinelli, AG. Comment on “Independent Origins of Middle Ear Bones in Monotremes and Therians” (II). Science 2005;309:1492bCrossRefGoogle ScholarPubMed
15 Mason, MJ. Pathways for sound transmission to the inner ear in amphibians. In: Narins, PM, Feng, AS, Fay, RR, Popper, AN, eds. Hearing and Sound Communication in Amphibians. New York: Springer, 2007;147–83Google Scholar
16 Jørgensen, MB, Kanneworff, M. Middle ear transmission in the grass frog, Rana temporaria . J Comp Physiol [A] 1998;182:5964 Google ScholarPubMed
17 Mason, MJ, Narins, PM. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I. The extrastapes. J Exp Biol 2002;205:3153–65CrossRefGoogle ScholarPubMed
18 Werner, YL. Mechanical leverage in the middle ear of the American bullfrog, Rana catesbeiana . Hear Res 2003;175:5465 CrossRefGoogle ScholarPubMed
19 Mason, MJ, Narins, PM. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana II. The operculum. J Exp Biol 2002;205:3167–76CrossRefGoogle ScholarPubMed
20 Baird, IL. The anatomy of the reptilian ear. In: Gans, C, Parsons, TS, eds. Biology of the Reptilia. New York: Academic Press, 1970;193275 Google Scholar
21 Wever, EG. The Reptile Ear: Its Structure and Function. Princeton: Princeton University Press, 1978 Google Scholar
22 Saunders, JC, Duncan, RK, Doan, DE, Werner, YL. The middle ear of reptiles and birds. In: Dooling, RJ, Fay, RR, Popper, AN, eds. Comparative Hearing: Birds and Reptiles. New York: Springer, 2000;1369 CrossRefGoogle Scholar
23 Wever, EG, Werner, YL. The function of the middle ear in lizards: Crotaphytus collaris (Iguanidae). J Exp Zool 1970;175:327–42CrossRefGoogle ScholarPubMed
24 Rosowski, JJ, Peake, WT, Lynch, TJ, Leong, R, Weiss, TF. A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage. Hear Res 1985;20:139–55CrossRefGoogle Scholar
25 Manley, GA. The middle ear of the Tokay gecko. J Comp Physiol 1972;81:239–50CrossRefGoogle Scholar
26 Manley, GA. Frequency response of the middle ear of geckos. J Comp Physiol 1972;81:251–8CrossRefGoogle Scholar
27 Werner, YL, Montgomery, LG, Safford, SD, Igic, PG, Saunders, JC. How body size affects middle-ear structure and function and auditory sensitivity in gekkonoid lizards. J Exp Biol 1998;201:487502 CrossRefGoogle ScholarPubMed
28 Saunders, JC, Johnstone, BM. A comparative analysis of middle-ear function in non-mammalian vertebrates. Acta Otolaryngol (Stockh) 1972;73:353–61CrossRefGoogle ScholarPubMed
29 Wever, EG. The Reptile Ear: Its Structure and Function. Princeton: Princeton University Press, 1978;63Google Scholar
30 Wever, EG, Vernon, JA. Auditory responses in the common box turtle. Proc Natl Acad Sci U S A 1956;42:962–5CrossRefGoogle ScholarPubMed
31 Lenhardt, ML, Klinger, RC, Musick, JA. Marine turtle middle-ear anatomy. J Aud Res 1985;25:6672 Google ScholarPubMed
32 Ridgway, SH, Wever, EG, McCormick, JG, Palin, J, Anderson, JH. Hearing in the giant sea turtle, Chelonia mydas . Proc Natl Acad Sci U S A 1969;64:884–90CrossRefGoogle ScholarPubMed
33 Wever, EG. The Reptile Ear: Its Structure and Function. Princeton: Princeton University Press, 1978;851Google Scholar
34 Saunders, JC. Auditory structure and function in the bird middle ear: an evaluation by SEM and capacitive probe. Hear Res 1985;18:253–68CrossRefGoogle ScholarPubMed
35 Gaudin, EP. On the middle ear of birds. Acta Otolaryngol (Stockh) 1968;65:316–26CrossRefGoogle ScholarPubMed
36 Norberg, . Skull asymmetry, ear structure and function and auditory localisation in Tengmalm's owl, Aegiolus funereus (Linné). Philos Trans Roy Soc B 1978;282:325410 Google Scholar
37 Starck, JM. Comparative anatomy of the external and middle ear of palaeognathous birds. Adv Anat Embryol Cell Biol 1995;131:1137 CrossRefGoogle ScholarPubMed
38 Gummer, AW, Smolders, JWT, Klinke, R. Mechanics of a single-ossicle ear: I. The extra-stapedius of the pigeon. Hear Res 1989;39:113 CrossRefGoogle ScholarPubMed
39 Pohlman, AG. The position and functional interpretation of the elastic ligaments in the middle-ear region of Gallus . J Morphol 1921;35:229–62CrossRefGoogle Scholar
40 Smith, G. The middle ear and columella of birds. Q J Microsc Sci 1904;48:1122 Google Scholar
41 Mills, R, Zhang, J. Applied comparative physiology of the avian middle ear: the effect of static pressure changes in columellar ears. J Laryngol Otol 2006;120:1005–7CrossRefGoogle ScholarPubMed
42 Nummela, S, Reuter, T, Hemilä, S, Holmberg, P, Paukku, P. The anatomy of the killer whale middle ear (Orcinus orca). Hear Res 1999;133:6170 CrossRefGoogle ScholarPubMed
43 Mason, MJ. Morphology of the middle ear of golden moles (Chrysochloridae). J Zool 2003;260:391403 CrossRefGoogle Scholar
44 Fleischer, G. Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 1978;55:170 Google ScholarPubMed
45 Dahmann, H. On the physiology of hearing; experimental investigations of the mechanics of the auditory ossicle chain, as well as on their behavior with sound and air pressure [in German]. Z Hals- Nasen- Ohrenheilkunde 1929;24:462–97Google Scholar
46 Decraemer, WF, Khanna, SM, Funnell, WRJ. Malleus vibration mode changes with frequency. Hear Res 1991;54:305–18CrossRefGoogle ScholarPubMed
47 Decraemer, WF, Khanna, SM. Modelling the malleus vibration as a rigid body motion with one rotational and one translational degree of freedom. Hear Res 1994;72:118 CrossRefGoogle ScholarPubMed
48 Marquet, J. The incudo-malleal joint. J Laryngol Otol 1981;95:543–65CrossRefGoogle ScholarPubMed
49 Sim, JH, Puria, S. Soft tissue morphometry of the malleus-incus complex from micro-CT imaging. J Assoc Res Otolaryngol 2008;9:521 CrossRefGoogle ScholarPubMed
50 Hinchcliffe, R, Pye, A. Variations in the middle ear of the Mammalia. J Zool 1969;157:277–88CrossRefGoogle Scholar
51 Mason, MJ. Evolution of the middle ear apparatus in talpid moles. J Morphol 2006;267:678–95CrossRefGoogle ScholarPubMed
52 Segall, W. Characteristics of the ear, especially the middle ear, in fossorial mammals, compared to those in the Manidae. Acta Anat (Basel) 1973;86:96110 CrossRefGoogle ScholarPubMed
53 Burda, H, Bruns, V, Hickman, GC. The ear in subterranean Insectivora and Rodentia in comparison with ground-dwelling representatives. 1. Sound conducting system of the middle ear. J Morphol 1992;214:4961 CrossRefGoogle ScholarPubMed
54 Segall, W. Morphological parallelisms of bulla and auditory ossicles in some insectivores and marsupials. Fieldiana Zool 1970;51:169205 Google Scholar
55 Wible, JR, Wang, Y, Li, C, Dawson, MR. Cranial anatomy and relationships of a new ctenodactyloid (Mammalia, Rodentia) from the Early Eocene of Hubei Province, China. Ann Carnegie Mus 2005;74:91150 CrossRefGoogle Scholar
56 Doran, AHG. Morphology of the mammalian ossicula auditûs . Transactions of the Linnean Society of London. Second series: Zoology 1878;1:371497 CrossRefGoogle Scholar
57 Argyle, EC, Mason, MJ. Middle ear structures of Octodon degus (Rodentia: Octodontidae), in comparison with those of subterranean caviomorphs. J Mammal 2008;89:1447–55CrossRefGoogle Scholar
58 Mason, MJ. The middle ear apparatus of the tuco-tuco Ctenomys sociabilis (Rodentia, Ctenomyidae). J Mammal 2004;85:797805 CrossRefGoogle Scholar
59 Amin, S, Tucker, AS. Joint formation in the middle ear: lessons from the mouse and guinea pig. Dev Dyn 2006;235:1326–33CrossRefGoogle ScholarPubMed
60 Burda, H. Morphology of the middle and inner ear in some species of shrews (Insectivora, Soricidae). Acta Sc Nat Brno 1979;13:146 Google Scholar
61 Zeller, U. Ontogenetic evidence for cranial homologies in monotremes and therians, with special reference to Ornithorhynchus . In: Szalay, FS, Novacek, MJ, McKenna, MC, eds. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. New York: Springer-Verlag, 1993;95107 CrossRefGoogle Scholar
62 Gates, GR, Saunders, JC, Bock, GR, Aitkin, LM, Elliott, MA. Peripheral auditory function in the platypus, Ornithorhynchus anatinus . J Acoust Soc Am 1974;56:152–6CrossRefGoogle ScholarPubMed
63 Chien, W, Northrop, C, Levine, S, Pilch, BZ, Peake, WT, Rosowski, JJ et al. Anatomy of the distal incus in humans. J Assoc Res Otolaryngol 2009;10:485–96CrossRefGoogle ScholarPubMed
64 Funnell, WR, Heng Siah, T, McKee, MD, Daniel, SJ, Decraemer, WF. On the coupling between the incus and the stapes in the cat. J Assoc Res Otolaryngol 2005;6:918 CrossRefGoogle ScholarPubMed
65 Karmody, CS, Northrop, CC, Levine, SR. The incudostapedial articulation: new concepts. Otol Neurotol 2009;30:990–7CrossRefGoogle ScholarPubMed
66 Mason, MJ, Lai, FWS, Li, J-G, Nevo, E. Middle ear structure and bone conduction in Spalax, Eospalax and Tachyoryctes mole-rats (Rodentia: Spalacidae). J Morphol 2010;271:462–72CrossRefGoogle ScholarPubMed
67 Møller, AR. Transfer function of the middle ear. J Acoust Soc Am 1963;35:1526–34CrossRefGoogle Scholar
68 Guinan, JJ, Peake, WT. Middle-ear characteristics of anesthetized cats. J Acoust Soc Am 1967;41:1237–61CrossRefGoogle ScholarPubMed
69 Decraemer, WF, Khanna, SM. Measurement, visualization and quantitative analysis of complete three-dimensional kinematical data sets of human and cat middle ear. In: Gyo, K, Wada, H, Hato, N, Koike, T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;310 CrossRefGoogle Scholar
70 Manley, GA, Johnstone, BM. Middle-ear function in the guinea pig. J Acoust Soc Am 1974;56:571–6CrossRefGoogle ScholarPubMed
71 Saunders, JC, Summers, RM. Auditory structure and function in the mouse middle ear: an evaluation by SEM and capacitive probe. J Comp Phys [A] 1982;146:517–25CrossRefGoogle Scholar
72 Wilson, JP, Bruns, V. Middle-ear mechanics in the CF-bat Rhinolophus ferrumequinum . Hear Res 1983;10:113 CrossRefGoogle ScholarPubMed
73 de la Rochefoucauld, O, Olson, ES. A sum of simple and complex motions on the eardrum and manubrium in gerbil. Hear Res 2010;263:915 CrossRefGoogle ScholarPubMed
74 Gyo, K, Aritomo, H, Goode, RL. Measurement of the ossicular vibration ratio in human temporal bones by use of a video measuring system. Acta Otolaryngol (Stockh) 1987;103:8795 CrossRefGoogle ScholarPubMed
75 Kirikae, I. The Structure and Function of the Middle Ear. Tokyo: University of Tokyo Press, 1960 Google Scholar
76 Fischler, H, Frei, EH, Spira, D, Rubinstein, M. Dynamic response of middle ear structures. J Acoust Soc Am 1967;41:1220–31CrossRefGoogle ScholarPubMed
77 Elpern, BS, Greisen, O, Andersen, HC. Experimental studies on sound transmission in the human ear. VI. Clinical and experimental observations on non-otosclerotic ossicle fixation. Acta Otolaryngol (Stockh) 1965;60:223–30CrossRefGoogle Scholar
78 Sim, JH, Puria, S, Steele, C. Three-dimensional measurements and analysis of the isolated malleus-incus complex. In: Gyo, K, Wada, H, Hato, N, Koike, T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;61–7CrossRefGoogle Scholar
79 Willi, UB, Ferrazzini, MA, Huber, AM. The incudo-malleolar joint and sound transmission losses. Hear Res 2002;174:3244 CrossRefGoogle ScholarPubMed
80 Willi, UB, Ferrazzini, MA, Huber, AM. The mobility of the incudo-malleolar joint and associated middle-ear transmission losses. In: Gyo, K, Wada, H, Hato, N, Koike, T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;5660 CrossRefGoogle Scholar
81 Ravicz, M, Peake, WT, Nakajima, HH, Merchant, SN, Rosowski, JJ. Modeling flexibility in the human ossicular chain: comparison to ossicular fixation data. In: Gyo, K, Wada, H, Hato, N, Koike, T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;91–8CrossRefGoogle Scholar
82 Nakajima, HH, Ravicz, ME, Merchant, SN, Peake, WT, Rosowski, JJ. Experimental ossicular fixations and the middle ear's response to sound: evidence for a flexible ossicular chain. Hear Res 2005;204:6077 CrossRefGoogle ScholarPubMed
83 Gundersen, T, Høgmoen, K. Holographic vibration analysis of the ossicular chain. Acta Otolaryngol (Stockh) 1976;82:1625 CrossRefGoogle ScholarPubMed
84 Cancura, W. On the statics of malleus and incus and on the function of the malleus-incus joint. Acta Otolaryngol (Stockh) 1980;89:342–4CrossRefGoogle ScholarPubMed
85 Hüttenbrink, K-B. The mechanics of the middle-ear at static air pressures: the role of the ossicular joints, the function of the middle-ear muscles and the behaviour of stapedial prostheses. Acta Otolaryngol Suppl (Stockh) 1988;451:135 CrossRefGoogle ScholarPubMed
86 Rosowski, JJ, Carney, LH, Lynch, TJ, Peake, WT. The effectiveness of external and middle ears in coupling acoustic power into the cochlea. In: Allen, JB, Hall, JL, Hubbard, A, Neely, ST, Tubis, A, eds. Lecture Notes in Biomathematics vol. 64: Peripheral Auditory Mechanisms. New York: Springer-Verlag, 1986;312 Google Scholar
87 Manley, GA. Some aspects of the evolution of hearing in vertebrates. Nature 1971;230:506–9CrossRefGoogle ScholarPubMed
88 Megela-Simmons, A, Moss, CF, Daniel, KM. Behavioral audiograms of the bullfrog (Rana catesbeiana) and the green tree frog (Hyla cinerea). J Acoust Soc Am 1985;78:1236–44CrossRefGoogle ScholarPubMed
89 Feng, AS, Narins, PM, Xu, C-H, Lin, W-Y, Yu, Z-L, Qiu, Q et al. Ultrasonic communication in frogs. Nature 2006;440:333–6CrossRefGoogle ScholarPubMed
90 Christensen-Dalsgaard, J. Vertebrate pressure-gradient receivers. Hear Res 2011;273:3745 CrossRefGoogle ScholarPubMed
91 Heffner, RS, Koay, G, Heffner, HE. Hearing in American leaf-nosed bats. III: Artibeus jamaicensis . Hear Res 2003;184:113–22CrossRefGoogle ScholarPubMed
92 Overstreet, EH, Ruggero, MA. Development of wide-band middle ear transmission in the Mongolian gerbil. J Acoust Soc Am 2002;111:261–70CrossRefGoogle ScholarPubMed
93 Puria, S, Allen, JB. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. J Acoust Soc Am 1998;104:3463–81CrossRefGoogle ScholarPubMed
94 Hato, N, Gyo, K, Stenfelt, S, Welsh, JT, Goode, RL. Time delay of acoustic transmission in human middle ear. In: Gyo, K, Wada, H, Hato, N, Koike, T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;51–5CrossRefGoogle Scholar
95 Ravicz, ME, Cooper, NP, Rosowski, JJ. Gerbil middle-ear sound transmission from 100 Hz to 60 kHz. J Acoust Soc Am 2008;124:363–80CrossRefGoogle Scholar
96 Puria, S, Steele, C. Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals. Hear Res 2010;263:183–90CrossRefGoogle ScholarPubMed
97 Mason, MJ, Willi, UB, Narins, PM. Comments on “Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals”, by Sunil Puria & Charles Steele. Hear Res 2010;267:13 CrossRefGoogle Scholar
98 Lavender, D, Taraskin, SN, Mason, MJ. Mass distribution and rotational inertia of “microtype” and “freely mobile” middle ear ossicles in rodents. Hear Res 2011;282:97107 CrossRefGoogle ScholarPubMed
99 Funnell, WRJ, Khanna, SM, Decraemer, WF. On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum. J Acoust Soc Am 1992;91:2082–90CrossRefGoogle Scholar
100 Purgue, AP, Narins, PM. Mechanics of the inner ear of the bullfrog (Rana catesbeiana): the contact membranes and the periotic canal. J Comp Physiol [A] 2000;186:481–8CrossRefGoogle ScholarPubMed
101 Narins, PM. Reduction of tympanic membrane displacement during vocalization of the arboreal frog, Eleutherodactylus coqui . J Acoust Soc Am 1992;91:3551–7CrossRefGoogle ScholarPubMed
102 Hetherington, TE, Lombard, RE. Electromyography of the opercularis muscle of Rana catesbeiana: an amphibian tonic muscle. J Morphol 1983;175:1726 CrossRefGoogle ScholarPubMed
103 Narins, PM, Lewis, ER, Purgue, AP, Bishop, PJ, Minter, LR, Lawson, DP. Functional consequences of a novel middle ear adaptation in the central African frog Petropedetes parkeri (Ranidae). J Exp Biol 2001;204:1223–32CrossRefGoogle ScholarPubMed
104 Purgue, AP, Narins, PM. A model for energy flow in the inner ear of the bullfrog (Rana catesbeiana). J Comp Phys [A] 2000;186:489–95CrossRefGoogle Scholar
105 Larsen, ON, Dooling, RJ, Ryals, BM. Roles of intracranial air pressure in bird audition. In: Lewis, ER, Long, GR, Lyon, RF, Narins, PM, Steele, CR, Hecht-Poinar, E, eds. Diversity in Auditory Mechanisms. Singapore: World Scientific, 1997;1117 Google Scholar
106 Kobrak, HG. The Middle Ear. Chicago: University of Chicago Press, 1959 Google Scholar
107 Tideholm, B, Carlborg, B, Jönsson, S, Bylander-Groth, A. Continuous long-term measurements of the middle ear pressure in subjects without a history of ear disease. Acta Otolaryngol (Stockh) 1998;118:369–74Google ScholarPubMed
108 Tonndorf, J, Khanna, SM. Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 1972;52:1221–33CrossRefGoogle ScholarPubMed
109 Dirckx, JJ, Decraemer, WF. Human tympanic membrane deformation under static pressure. Hear Res 1991;51:93105 CrossRefGoogle ScholarPubMed
110 Murakami, S, Gyo, K, Goode, RL. Effect of middle ear pressure change on middle ear mechanics. Acta Otolaryngol (Stockh) 1997;117:390–5CrossRefGoogle ScholarPubMed
111 Ladak, HM, Decraemer, WF, Dirckx, JJ, Funnell, WRJ. Response of the cat eardrum to static pressures: mobile versus immobile malleus. J Acoust Soc Am 2004;116:3008–21CrossRefGoogle ScholarPubMed
112 Tideholm, B, Jönsson, S, Carlborg, B, Welinder, R, Grenner, J. Continuous 24-hour measurement of middle ear pressure. Acta Otolaryngol (Stockh) 1996;116:581–8CrossRefGoogle ScholarPubMed
113 Djupesland, G. Middle ear muscle reflexes elicited by acoustic and nonacoustic stimulation. Acta Otolaryngol Suppl (Stockh) 1964;188:287–92CrossRefGoogle ScholarPubMed
114 Djupesland, G. Electromyography of the tympanic muscles in man. Int Audiol 1965;4:3441 CrossRefGoogle Scholar
115 Klockhoff, I, Anderson, H. Reflex activity in the tensor tympani muscle recorded in man. Acta Otolaryngol (Stockh) 1960;51:184–8CrossRefGoogle ScholarPubMed
116 Ingelstedt, S, Jonson, B. Mechanisms of the gas exchange in the normal human middle ear. Acta Otolaryngol Suppl (Stockh) 1966;224:452–61Google Scholar
117 Bell, A. How do middle ear muscles protect the cochlea? Reconsideration of the intralabyrinthine pressure theory. J Hear Sci 2011;1:923 CrossRefGoogle Scholar
118 Pang, XD, Peake, WT. How do contractions of the stapedius muscle alter the acoustic properties of the ear? In: Allen, JB, Hall, JL, Hubbard, A, Neely, ST, Tubis, A, eds. Peripheral Auditory Mechanisms. New York: Springer-Verlag, 1986;3643 CrossRefGoogle Scholar
119 Love, JT, Stream, RW. The biphasic acoustic reflex: a new perspective. Laryngoscope 1978;88:298313 CrossRefGoogle ScholarPubMed
120 Jahrsdoerfer, RA, Aguilar, EA, Yeakley, JW, Cole, RR. Treacher Collins syndrome: an otologic challenge. Ann Otol Rhinol Laryngol 1989;98:807–12CrossRefGoogle ScholarPubMed
121 Belal, A, Stewart, TJ. Pathological changes in the middle ear joints. Ann Otol Rhinol Laryngol 1974;83:159–67CrossRefGoogle ScholarPubMed
122 Ceruti, S, Stinckens, C, Cremers, CWRJ, Casselman, JW. Temporal bone anomalies in the branchio-oto-renal syndrome: detailed computed tomographic and magnetic resonance imaging findings. Otol Neurotol 2002;23:200–7CrossRefGoogle ScholarPubMed
123 Schuknecht, HF. Congenital aural atresia. Laryngoscope 1989;908–17CrossRefGoogle ScholarPubMed
124 Lempert, J, Wolff, D. Histopathology of the incus and the head of the malleus in cases of stapedial ankylosis. Arch Otolaryngol 1945;42:339–67CrossRefGoogle ScholarPubMed
125 Belal, A. Presbycusis: physiological or pathological. J Laryngol Otol 1975;89:1011–25CrossRefGoogle ScholarPubMed
126 Etholm, B, Belal, A. Senile changes in the middle ear joints. Ann Otol Rhinol Laryngol 1974;83:4954 CrossRefGoogle ScholarPubMed
127 Rawool, VW, Harrington, BT. Middle ear admittance and hearing abnormalities in individuals with osteoarthritis. Audiol Neurootol 2007;12:127–36CrossRefGoogle ScholarPubMed
128 Toppila, E, Pyykkö, I, Starck, J. Age and noise-induced hearing loss. Scand Audiol 2001;30:236–44CrossRefGoogle ScholarPubMed
129 Gussen, R. Atypical ossicle joint lesions in rheumatoid arthritis with sicca syndrome (Sjögren syndrome). Arch Otolaryngol 1977;103:284–6CrossRefGoogle ScholarPubMed
130 Ozturk, A, Yalcin, S, Kaygusuz, I, Sahin, S, Gok, U, Karlidag, T et al. High-frequency hearing loss and middle ear involvement in rheumatoid arthritis. Am J Otolaryngol 2004;25:411–17CrossRefGoogle ScholarPubMed
131 Salvinelli, F, Cancilleri, F, Casale, M, Luccarelli, V, Di Peco, V, D'Ascanio, L et al. Hearing thresholds in patients affected by rheumatoid arthritis. Clin Otolaryngol 2004;29:75–9CrossRefGoogle ScholarPubMed
132 Takatsu, M, Higaki, M, Kinoshita, H, Mizushima, Y, Koizuka, I. Ear involvement in patients with rheumatoid arthritis. Otol Neurotol 2005;26:755–61CrossRefGoogle ScholarPubMed
133 Colletti, V, Fiorino, FG, Bruni, L, Biasi, D. Middle ear mechanics in subjects with rheumatoid arthritis. Int J Audiol 1997;36:136–46CrossRefGoogle ScholarPubMed
134 Moffat, DA, Ramsden, RT, Rosenberg, JN, Booth, JB, Gibson, WPR. Otoadmittance measurements in patients with rheumatoid arthritis. J Laryngol Otol 1977;91:917–27CrossRefGoogle ScholarPubMed
135 Raut, V, Cullen, J, Cathers, G. Hearing loss in rheumatoid arthritis. J Otolaryngol 2001;30:289–94CrossRefGoogle ScholarPubMed
136 Özcan, M, Karakus, F, Gündüz, O, Tuncel, Ü, Sahin, H. Hearing loss and middle ear involvement in rheumatoid arthritis. Rheumatol Int 2002;22:1619 Google ScholarPubMed
137 García Callejo, FJ, Conill Tobías, N, Muñoz Fernández, N, de Paula Vernetta, C, Alonso Castañeira, I, Marco Algarra, JM. Hearing impairment in patients with rheumatoid arthritis [in Spanish]. Acta Otorhinolaringol Esp 2007;58:232–8CrossRefGoogle ScholarPubMed
138 Murdin, L, Patel, S, Walmsley, J, Yeoh, L. Hearing difficulties are common in patients with rheumatoid arthritis. Clin Rheumatol 2008;27:637–40CrossRefGoogle ScholarPubMed
139 Ikiz, AO, Unsal, E, Kirkim, G, Erdag, TK, Guneri, EA. Hearing loss and middle ear involvement in patients with juvenile idiopathic arthritis. Int J Pediat Otorhinolaryngol 2007;71:1079–85CrossRefGoogle ScholarPubMed
140 Pau, HW. Footplate perforation caused by TORP's; acoustic trauma caused by surgical noise. In: Hüttenbrink, K-B, ed. Middle Ear Mechanics in Research and Otosurgery. Dresden: Dresden University of Technology, 1997;207–13Google Scholar
141 Marquet, J. “Stapedotomy” technique and results. Am J Otol 1985;6:63–7Google ScholarPubMed
142 Redfors, YD, Möller, C. Otosclerosis: thirty-year follow-up after surgery. Ann Otol Rhinol Laryngol 2011;120:608–14CrossRefGoogle ScholarPubMed
143 Mills, R. Applied comparative anatomy of the avian middle ear. J R Soc Med 1994;87:155–6CrossRefGoogle ScholarPubMed
144 Mills, R, Zadrozniak, M, Jie, Z. The motion of conventional and novel total ossicular replacement prostheses during changes in static pressure. Otolaryngol Head Neck Surg 2007;137:762–5CrossRefGoogle ScholarPubMed
145 Nishihara, S, Goode, RL. Experimental study of the acoustic properties of incus replacement prostheses in a human temporal bone model. Otol Neurotol 1994;15:485–94Google Scholar
146 Morris, DP, Bance, M, van Wijhe, RG, Kiefte, M, Smith, R. Optimum tension for partial ossicular replacement prosthesis reconstruction in the human middle ear. Laryngoscope 2004;114:305–8CrossRefGoogle ScholarPubMed
147 Feenstra, L, Vlaming, MS. Laser inferometry with human temporal bones. Adv Otorhinolaryngol 1987;37:36–8Google Scholar
148 Goode, RL. The ideal middle ear prosthesis. In: Hüttenbrink, K-B, ed. Middle Ear Mechanics in Research and Otosurgery. Dresden: Dresden University of Technology, 1997;169–74Google Scholar
149 Goode, RL, Yamada, H. A constant tension middle ear ossicular replacement prosthesis: why don't we have one? Hear Res 2010;263:235CrossRefGoogle Scholar
150 Goode, RL, Honda, N, Maetani, T. Self-adjusting ossicular replacement prosthesis - studies in a temporal bone model. Trans Am Otol Soc 2004;92Google Scholar
151 Abel, EW, Abraham, F, Mills, RP. A self-adjusting ossicular replacement prosthesis. Hear Res 2010;263:250CrossRefGoogle Scholar
152 Arechvo, I, Beleites, T, Lasurashvili, N, Bornitz, M, Zahnert, T. A new TORP with a resilient joint: experimental data from human temporal bones. Hear Res 2010;263:235CrossRefGoogle Scholar
153 Yamada, H, Goode, RL. A self-adjusting ossicular prosthesis containing polyurethane sponge. Otol Neurotol 2010;31:1404–8CrossRefGoogle ScholarPubMed
154 Arechvo, I, Bornitz, M, Lasurashvili, N, Zahnert, T, Beleites, T. New total ossicular replacement prostheses with a resilient joint: experimental data from human temporal bones. Otol Neurotol 2012;33:60–6CrossRefGoogle ScholarPubMed
155 Bornitz, M, Zahnert, T, Hüttenbrink, K-B, Hardtke, H-J. Design considerations for length variable prostheses: finite element model simulations. In: Gyo, K, Wada, H, Hato, N, Koike, T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;153–60CrossRefGoogle Scholar
156 Manley, GA. The lessons of middle-ear function in non-mammals: improving columellar prostheses. J R Soc Med 1995;88:367–8Google ScholarPubMed