Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T01:21:59.573Z Has data issue: false hasContentIssue false

The clinical course of vestibular neuritis from the point of view of the ocular vestibular evoked myogenic potential

Published online by Cambridge University Press:  10 January 2022

L Manzari*
Affiliation:
MSA ENT Academy Center, Cassino, Italy
D Graziano
Affiliation:
MSA ENT Academy Center, Cassino, Italy
G Zambonini
Affiliation:
ENT Department, University of Perugia, Italy
M Faralli
Affiliation:
ENT Department, University of Perugia, Italy
G Morone
Affiliation:
Fondazione Santa Lucia Scientific Institute for Research and Healthcare, Rome, Italy
M Tramontano
Affiliation:
Fondazione Santa Lucia Scientific Institute for Research and Healthcare, Rome, Italy
*
Author for correspondence: Dr L Manzari, MSA ENT Academy Center, Cassino03043, Italy E-mail: [email protected]

Abstract

Background

Studying otolith functions after unilateral vestibular neuritis using ocular vestibular-evoked myogenic potentials and subjective visual vertical tests could give different results.

Method

A total of 39 patients underwent a vestibular assessment that included the Dizziness Handicap Inventory and horizontal and vertical semicircular canal function testing with video head impulse testing, ocular vestibular-evoked myogenic potential testing, cervical vestibular-evoked myogenic potentials and subjective visual vertical testing.

Results

All patients showed a significant alteration (asymmetry ratio more than 40 per cent) for ocular vestibular-evoked myogenic potentials as well as for subjective visual vertical testing (more than −2° to more than +2°) during the acute phase, whereas after 72 hours from the acute vertigo attack normal values (asymmetry ratio less than 40 per cent) were found in 6 out of 39 patients for ocular vestibular-evoked myogenic potentials and 36 out of 39 for the subjective visual vertical (less than −2° to less than +2°).

Conclusion

Ocular vestibular-evoked myogenic potentials are the most suitable test to evaluate otolith functions in patients with unilateral vestibular neuritis in the acute and sub-acute phase.

Type
Main Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dr L Manzari takes responsibility for the integrity of the content of the paper

References

Strupp, M, Brandt, T. Peripheral vestibular disorders. Curr Opin Neurol 2013;26:81–9CrossRefGoogle ScholarPubMed
Newman-Toker, DE, Kerber, KA, Hsieh, YH, Pula, JH, Omron, R, Saber Tehrani, AS et al. HINTS outperforms ABCD2 to screen for stroke in acute continuous vertigo and dizziness. Acad Emerg Med 2013;20:986–96CrossRefGoogle ScholarPubMed
Newman-Toker, DE, Curthoys, IS, Halmagyi, GM. Diagnosing stroke in acute vertigo: the HINTS family of eye movement tests and the future of the "Eye ECG". Semin Neurol 2015;35:506–21Google Scholar
Kattah, JC. Use of HINTS in the acute vestibular syndrome. An overview. Stroke Vasc Neurol 2018;3:190–6CrossRefGoogle ScholarPubMed
Lindeman, HH. Studies on the morphology of the sensory regions of the vestibular apparatus with 45 figures. Ergeb Anat Entwicklungsgesch 1969;42:1113Google ScholarPubMed
Gresty, MA, Bronstein, AM, Brandt, T, Dieterich, M. Neurology of otolith function. Peripheral and central disorders. Brain 1992;115:647–73Google ScholarPubMed
Manzari, L, Burgess, AM, MacDougall, HG, Curthoys, IS. Vestibular function after vestibular neuritis. Int J Audiol 2013;52:713–18CrossRefGoogle ScholarPubMed
Rosengren, SM, Colebatch, JG, Straumann, D, Weber, KP. Why do oVEMPs become larger when you look up? Explaining the effect of gaze elevation on the ocular vestibular-evoked myogenic potential. Clin Neurophysiol 2013;124:785–91CrossRefGoogle ScholarPubMed
Curthoys, IS, MacDougall, HG, Vidal, PP, de Waele, C. Sustained and transient vestibular systems: a physiological basis for interpreting vestibular function. Front Neurol 2017;8:117CrossRefGoogle ScholarPubMed
Curthoys, IS, Grant, JW, Burgess, AM, Pastras, CJ, Brown, DJ, Manzari, L. Otolithic receptor mechanisms for vestibular-evoked myogenic potentials: a review. Front Neurol 2018;9:366CrossRefGoogle ScholarPubMed
Curthoys, IS, Grant, JW, Pastras, CJ, Brown, DJ, Burgess, AM, Brichta, AM et al. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J Neurophysiol 2019;12:259–76CrossRefGoogle Scholar
Curthoys, IS, Dlugaiczyk, J. Physiology, clinical evidence and diagnostic relevance of sound-induced and vibration-induced vestibular stimulation. Curr Opin Neurol 2020;33:126–35CrossRefGoogle ScholarPubMed
Weber, KP, Rosengren, SM, Michels, R, Sturm, V, Straumann, D, Landau, K. Single motor unit activity in human extraocular muscles during the vestibulo-ocular reflex. J Physiol 2012;590:3091–101CrossRefGoogle ScholarPubMed
Manzari, L, Koch, G, Tramontano, M. Selective asymmetry of ocular vestibular-evoked myogenic potential in patients with acute utricular macula loss. J Int Adv Otol 2021;17:5863CrossRefGoogle ScholarPubMed
Curthoys, IS, Vulovic, V, Manzari, L. Ocular vestibular-evoked myogenic potential (oVEMP) to test utricular function: neural and oculomotor evidence. Acta Otorhinolaryngol Ital 2012;32:41–5Google ScholarPubMed
Oh, SY, Kim, JS, Yang, TH, Shin, BS, Jeong, SK. Cervical and ocular vestibular-evoked myogenic potentials in vestibular neuritis: comparison between air- and bone-conducted stimulation. J Neurol 2013;260:2102–9CrossRefGoogle ScholarPubMed
Faralli, M, Ricci, G, Manzari, L, Zambonini, G, Lapenna, R, Pettorossi, VE. Different time course of compensation of subjective visual vertical and ocular torsion after acute unilateral vestibular lesion. Eur Arch Otorhinolaryngol 2020;278:2269–76CrossRefGoogle ScholarPubMed
Bohmer, A, Rikenmann, J. The subjective visual vertical as a clinical parameter of vestibular diseases. J Vestib Res 1995;5:3545Google ScholarPubMed
Dieterich, M, Brandt, T, Tabak, S, Collewijn, H, Boumans, LJ. Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Ann Neurol 1993;33:292–9CrossRefGoogle ScholarPubMed
Suzuki, JI, Tokumasu, K, Goto, K. Eye movements from single utricular nerve stimulation in the cat. Acta Otolaryngol 1969;68:350–62CrossRefGoogle ScholarPubMed
McCue, MP, Guinan, JJ Jr. Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci 1994;14:6058–70CrossRefGoogle ScholarPubMed
McCue, MP, Guinan, JJ Jr. Sound-evoked activity in primary afferent neurons of a mammalian vestibular system. Am J Otol 1997;18:355–60Google ScholarPubMed
Curthoys, IS, Kim, J, McPhedran, SK, Camp, AJ. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 2006;175:256–67CrossRefGoogle ScholarPubMed
Manzari, L, Tedesco, A, Burgess, AM, Curthoys, IS. Ocular vestibular-evoked myogenic potentials to bone-conducted vibration in superior vestibular neuritis show utricular function. Otolaryngol Head Neck Surg 2010b;143:274–80CrossRefGoogle Scholar
Curthoys, IS, Vulovic, V. Vestibular primary afferent responses to sound and vibration in the guinea pig. Exp Brain Res 2011;210:347–52CrossRefGoogle ScholarPubMed
Curthoys, IS, Vulovic, V, Burgess, AM, Cornell, ED, Mezey, LE, Macdougall, HG et al. The basis for using bone-conducted vibration or air-conducted sound to test otolithic function. Ann N Y Acad Sci 2011;1233:231–41CrossRefGoogle ScholarPubMed
Böhmer, A, Rickenmann, J. The subjective visual vertical as a clinical parameter of vestibular function in peripheral vestibular diseases. J Vestib Res 1995;5:3545CrossRefGoogle ScholarPubMed
Faralli, M, Ricci, G, Molini, E, Longari, F, Altissimi, G, Frenguelli, A. Determining subjective visual vertical: dynamic versus static testing. Otol Neurotol 2007;28:1069–71CrossRefGoogle ScholarPubMed
Brandt, T, Strupp, M. General vestibular testing. Clin Neurophysiol 2005;116:406–26CrossRefGoogle ScholarPubMed
Jacobson, GP, Newman, CW. The development of the Dizziness Handicap Inventory. Arch Otolaryngol Head Neck Surg 1990;116:424–7CrossRefGoogle ScholarPubMed
MacDougall, HG, Weber, KP, McGarvie, LA, Halmagyi, GM, Curthoys, IS. The video head impulse test: diagnostic accuracy in peripheral vestibulopathy. Neurology 2009;73:1134–41CrossRefGoogle ScholarPubMed
Weber, KP, Aw, ST, Todd, MJ, McGarvie, LA, Curthoys, IS, Halmagyi, GM. Head impulse test in unilateral vestibular loss: vestibulo-ocular reflex and catch-up saccades. Neurology 2008;70:454–63CrossRefGoogle ScholarPubMed
Manzari, L, Burgess, AM, Curthoys, IS. Effect of bone-conducted vibration of the midline forehead (Fz) in unilateral vestibular loss (uVL). Evidence for a new indicator of unilateral otolithic function. Acta Otorhinolaryngol Ital 2010;30:175Google ScholarPubMed
Curthoys, IS, Burgess, AM, Manzari, L. The evidence for selective loss of otolithic function. Semin Neurol 2020;40:33–9Google ScholarPubMed
Newman-Toker, DE, Kattah, JC, Alvernia, JE, Wang, DZ. Normal head impulse test differentiates acute cerebellar strokes from vestibular neuritis. Neurology 2008;70:2378–85CrossRefGoogle ScholarPubMed
Curthoys, IS, Dai, MJ, Halmagyi, GM. Human ocular torsional position before and after unilateral vestibular neurectomy. Exp Brain Res 1991;85:218–25CrossRefGoogle ScholarPubMed
Vibert, D, Häusler, R, Safran, AB. Subjective visual vertical in peripheral unilateral vestibular diseases. J Vestib Res 1999;9:145–52CrossRefGoogle ScholarPubMed
Herdman, SJ. Role of vestibular adaptation in vestibular rehabilitation. Otolaryngol Head Neck Surg 1998;119:4954CrossRefGoogle ScholarPubMed
Schmid-Priscoveanu, A, Straumann, D, Böhmer, A, Obzina, H. Vestibulo-ocular responses during static head roll and three-dimensional head impulses after vestibular neuritis. Acta Otolaryngol 1999;119:750–7CrossRefGoogle ScholarPubMed
Manzari, L, Tramontano, M. Suppression Head Impulse Paradigm (SHIMP) in evaluating the vestibulo-saccadic interaction in patients with vestibular neuritis. Eur Arch Otorhinolaryngol 2020;277:3205–12CrossRefGoogle ScholarPubMed
Manzari, L, Graziano, D, Tramontano, M. The different stages of vestibular neuritis from the point of view of the video head impulse test. audiology research. Audiol Res 2020;10:31–8CrossRefGoogle ScholarPubMed