Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:54:03.151Z Has data issue: false hasContentIssue false

Zero Cycles on Singular surfaces

Published online by Cambridge University Press:  04 September 2008

Amalendu Krishna
Affiliation:
School of Mathematics, Tata Institute Of Fundamental Research, Homi Bhabha Road, Mumbai, 400005, India, [email protected].
Get access

Abstract

Let X be a reduced and projective singular surface over ℂ and let X be a resolution of singularities of X. We show that CH2(X) ≅ CH2() if and only if for i = 0, 1. This verifies a conjecture of Srinivas.

We also verify Bloch's conjecture for singular surfaces assuming it holds for smooth surfaces. As a byproduct, we give an application to projective modules on certain singular affine surfaces.

Type
Research Article
Copyright
Copyright © ISOPP 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barbieri-Viale, L., Pedrini, C., Weibel, C., Roitman's Theorem for singular Varieties, Duke Math. J. 84 (1996), 155190CrossRefGoogle Scholar
2.Beilinson, A., Higher regulators and values of L-functions, J. of Soviet Math. 30 (1985), 20362070CrossRefGoogle Scholar
3.Biswas, J., Srinivas, V., Roitman's Theorem for Singular Projective Varieties, Compositio Math. 119 (1999), 213237CrossRefGoogle Scholar
4.Bloch, S., Kas, A., Liberman, D., Zero-cycles on surfaces with pg = 0, Compositio Math. 33 (1976), 135145Google Scholar
5.Cortinas, G., Geller, S., Weibel, C., Artinian Berger's Conjecture, Math. Zeitschrift 228 (1998), 569588CrossRefGoogle Scholar
6.Cumino, C., Greco, S., Manaresi, M., Bertini theorems for weak normality, Compositio Math. 48 (1983), 351362Google Scholar
7.Deligne, P., Theorie de Hodge III, Pub. Math. IHES 44 (1974), 578CrossRefGoogle Scholar
8.Esnault, H., Viehweg, E., Deligne-Beilinson cohomology, in Beilinson's conjecture on special values of L-functions, Perspectives in Math. 4, Academic Press, New York, 1988Google Scholar
9.Esnault, H., Srinivas, V., Viehweg, E., The Universal regular quotient of Chow group of points on projective varieties, Invent. Math. 135 (1999), 595664CrossRefGoogle Scholar
10.Gillet, H., Riemann Roch Theorems for higher algebraic K -theory, Adv. in Math. 40 (1981), 203289CrossRefGoogle Scholar
11.Gillet, H., On K -theory of surfaces with multiple curves and a conjecture of Bloch, Duke Math. J. 51 (1984), 195233CrossRefGoogle Scholar
12.Goodwillie, T., Relative algebraic K -theory and Cyclic homology, Ann. of Math. 124 (1986), 347402CrossRefGoogle Scholar
13.Grayson, D., Higher algebraic K -theory II, LNM series 551, Springer Verlag, (1976)Google Scholar
14.Grothendieck, A., Fondements de Geometrie Algebrique, Sem. Bourbaki (1957-62), Paris, 1962Google Scholar
15.Hartshorne, R., Algebraic Geometry, Springer- Verlag 52 (1977)CrossRefGoogle Scholar
16.Krishna, A., On K2 of 1-dimensional local rings, K-Theory 35 (2005), 139158CrossRefGoogle Scholar
17.Krishna, A., Srinivas, V., Zero-Cycles and K -theory on normal surfaces, Ann. of Math. 156 (2002), 155195CrossRefGoogle Scholar
18.Krishna, A., Srinivas, V., Zero-Cycles on singular varieties, London Math. Soc., Lecture Note Series 343 (2007), 264277Google Scholar
19.Krishna, A., Srinivas, V., Zero-Cycles on singular surfaces in positive characteristic, In preparationGoogle Scholar
20.Levine, M., Cohomology of singular varieties, Contemporary Math. 126 (1992), 113146CrossRefGoogle Scholar
21.Levine, M., Bloch's formula for singular surfaces, Topology 24 (1982), 165174CrossRefGoogle Scholar
22.Levine, M., Weibel, C., Zero cycles and complete intersections on singular varieties, J. Reine Angew. Math. 359 (1985), 106120Google Scholar
23.Loday, J-L, Cyclic Homology, Grund. der math. Wissen. series, Springer-Verlag 301 (1992)Google Scholar
24.Mumford, D., Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195204Google Scholar
25.Murthy, M. P., Swan, R. G., Vector bundles on affine surfaces, Invent. Math. 36 (1976), 125165CrossRefGoogle Scholar
26.Srinivas, V., Zero-cycles on a singular surface II, J. Reine Angew. Math. 362 (1985), 427Google Scholar
27.Srinivas, V., Zero-cycles on singular varieties, The Arithmetic and Geometry of cycles, NATO Science Series 548 (2000), 347382CrossRefGoogle Scholar
28.Srinivas, V., Vector bundles on the cone over a curve, Compositio Math. 47 (1982), 249269Google Scholar
29.Thomason, R., Trobaugh, T., Higher algebraic K -theory of schemes and of derived categories, The Grothendieck Festschrift III, Progress in Math. 88, Birkhauser, (1990)Google Scholar
30.Weibel, C., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994Google Scholar