Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T01:12:39.174Z Has data issue: false hasContentIssue false

Rationally trivial torsors in -homotopy theory

Published online by Cambridge University Press:  16 May 2011

Matthias Wendt
Affiliation:
Mathematisches Institut, Universität Freiburg, Eckerstraße 1, 79104, Freiburg im Breisgau, [email protected]
Get access

Abstract

In this paper, we show that rationally trivial torsors under split smooth linear algebraic groups induce fibre sequences in -homotopy theory. The results allow geometric proofs of stabilization results for unstable Karoubi-Villamayor K-theories and a description of the second -homotopy group of the projective line.

Type
Research Article
Copyright
Copyright © ISOPP 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AD08.Asok, A. and Doran, B.. Homotopy theory of smooth affine quadrics revisited. Preprint (2008).Google Scholar
AD09.Asok, A. and Doran, B.. -homotopy groups, excision, and solvable quotients. Adv. Math. 221 (2009), no. 4, 11441190.CrossRefGoogle Scholar
BB93.Białynicki-Birula, A.. On induced actions of algebraic groups. Ann. Inst. Fourier 43 (1993), no. 2, 365368.CrossRefGoogle Scholar
BCW76.Bass, H., Connell, E.H. and Wright, D.L.. Locally polynomial algebras are symmetric algebras. Invent. Math. 38 (1976), 279299.CrossRefGoogle Scholar
Bor91.Borel, A.. Linear algebraic groups. Graduate texts in mathematics 126. Springer (1991).CrossRefGoogle Scholar
CTO92.Colliot-Thélène, J.-L. and Ojanguren, M.. Espaces principaux homogènes localement triviaux. Publ. Math. Inst. Hautes Études Sci. 75 (1992), 97122.CrossRefGoogle Scholar
DF96.Farjoun, E. Dror. Cellular spaces, null spaces and homotopy localization. Lecture Notes in Mathematics 1622. Springer (1996).CrossRefGoogle Scholar
GJ99.Goerss, P.G. and Jardine, J.F.. Simplicial Homotopy Theory. Progress in Mathematics 174. Birkhäuser (1999).Google Scholar
Hov98.Hovey, M.. Model categories. Mathematical Surveys and Monographs 63. American Mathematical Society (1998).Google Scholar
Jar83.Jardine, J.F.. On the homotopy groups of algebraic groups. J. Algebra 81 (1983), 180201.CrossRefGoogle Scholar
Jar00.Jardine, J.F.. Motivic symmetric spectra. Doc. Math. 5 (2000), 445552.CrossRefGoogle Scholar
Kar73.Karoubi, M.. Périodicité de la K-théorie hermitienne, Algebraic K-theory III: Hermitian K-theory and Geometric Applications, Lecture Notes in Mathematics 343, Springer 1973, 301411.CrossRefGoogle Scholar
KOS75.Knus, M.A., Ojanguren, M. and Saltman, D.J.. On Brauer groups in characteristic p. Brauer groups (Proc. Conf., Northwestern Univ., Evanston, Ill., 1975), pp. 2549. Lecture Notes in Math. 549, Springer, Berlin, 1976.Google Scholar
Lam06.Lam, T.-Y.. Serre's problem on projective modules. Monographs in Mathematics. Springer (2006).CrossRefGoogle Scholar
Lin81.Lindel, H.. On the Bass-Quillen conjecture concerning projective modules over polynomial rings. Invent. Math. 65 (1981), 319323.CrossRefGoogle Scholar
Mor06a.Morel, F.. -algebraic topology. In: International Congress of Mathematicians II, pp. 10351059. European Mathematical Society (2006).Google Scholar
Mor06b.Morel, F.. -algebraic topology over a field. Preprint (2006).Google Scholar
Mor07.Morel, F.. -classification of vector bundles over smooth affine schemes. Preprint (2007).Google Scholar
Mor09.Morel, F.. The Friedlander-Milnor conjecture. Preprint (2009).Google Scholar
MV99.Morel, F. and Voevodsky, V.. -homotopy theory of schemes. Publ. Math. Inst. Hautes Études Sci. 90 (1999), 45143.CrossRefGoogle Scholar
Qui76.Quillen, D.G.. Projective modules over polynomial rings. Invent. Math. 36 (1976), 167171.CrossRefGoogle Scholar
Rag78.Raghunathan, M.S.. Principal bundles on affine space. In: C.P. Ramanujan – A Tribute. Studies in Mathematics 8, 187206. Springer (1978).Google Scholar
Rag89.Raghunathan, M.S.. Principal bundles on affine space and bundles on the projective line. Math. Ann. 285 (1989), 309332.CrossRefGoogle Scholar
Rez98.Rezk, C.. Fibrations and homotopy colimits of simplicial sheaves. Preprint (1998), arXiv:math.AT/9811038.Google Scholar
Ses63.Seshadri, C.S.. Some results on the quotient space by an algebraic group of automorphisms. Math. Ann. 149 (1963), 286301.CrossRefGoogle Scholar
SGA3-3.Schémas en groupes. III: Structure des schémas en groupes réductifs. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics 153, Springer-Verlag, Berlin-New York 1962/1964.Google Scholar
Wen07.Wendt, M.. On fibre sequences in motivic homotopy theory. PhD thesis, Universität Leipzig (2007).Google Scholar
Wen10a.Wendt, M.. -homotopy of Chevalley groups. J. K-Theory 5 (2010), 245287.CrossRefGoogle Scholar
Wen10b.Wendt, M.. Fibre sequences and localization of simplicial sheaves. Preprint (2010), arXiv:1011.4784.Google Scholar
Wen11.Wendt, M.. Classifying spaces and fibrations of simplicial sheaves. J. Homotopy Relat. Struct. 6 (2011), 138.Google Scholar