Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T18:15:05.845Z Has data issue: false hasContentIssue false

A Quillen model structure for Gray-categories

Published online by Cambridge University Press:  24 September 2010

Stephen Lack
Affiliation:
School of Computing and Mathematics, University of Western Sydney, Locked Bag 1797 Penrith South DC NSW 1797, Australia and Department of Mathematics, Macquarie University, NSW 2109, Australia. [email protected]
Get access

Abstract

A Quillen model structure on the category Gray-Cat of Gray-categories is described, for which the weak equivalences are the triequivalences. It is shown to restrict to the full subcategory Gray-Gpd of Gray-groupoids. This is used to provide a functorial and model-theoretic proof of the unpublished theorem of Joyal and Tierney that Gray-groupoids model homotopy 3-types. The model structure on Gray-Cat is conjectured to be Quillen equivalent to a model structure on the category Tricat of tricategories and strict homomorphisms of tricategories.

Type
Research Article
Copyright
Copyright © ISOPP 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berger, Clemens. Double loop spaces, braided monoidal categories and algebraic 3-type of space. In Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), Contemp. Math. 227, pages 4966. Amer. Math. Soc., Providence, RI, 1999.Google Scholar
2. Gabriel, P. and Zisman, M.. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 35. Springer-Verlag New York, Inc., New York, 1967.Google Scholar
3. Garner, Richard, Homomorphisms of higher categories, Preprint, arXiv:0810.4450v1.Google Scholar
4. Gordon, R., Power, A. J., and Street, Ross. Coherence for tricategories. Mem. Amer. Math. Soc., 117 (558):vi+81, 1995.Google Scholar
5. Gray, John W.. Formal category theory: adjointness for 2-categories. Springer-Verlag, Berlin, 1974.CrossRefGoogle Scholar
6. Gurski, Nick. An algebraic theory of tricategories. PhD thesis, University of Chicago, 2006.Google Scholar
7. Hirschhorn, Philip S.. Model categories and their localizations, Mathematical Surveys and Monographs 99. American Mathematical Society, Providence, RI, 2003.Google Scholar
8. Hovey, Mark. Model categories, Mathematical Surveys and Monographs 63. American Mathematical Society, Providence, RI, 1999.Google Scholar
9. Joyal, André and Street, Ross. Pullbacks equivalent to pseudopullbacks. Cahiers Topologie Géom. Différentielle Catég. 34(2):153156, 1993.Google Scholar
10. Joyal, André and Tierney, Myles. Strong stacks and classifying spaces. In Category theory (Como, 1990), Lecture Notes in Math. 1488, pages 213236. Springer, Berlin, 1991.Google Scholar
11. Kelly, G. M. and Lack, Stephen. -Cat is locally presentable or locally bounded if is so. Theory Appl. Categ. 8:555575, 2001.Google Scholar
12. Lack, Stephen. A Quillen model structure for 2-categories. K-Theory 26(2):171205, 2002.CrossRefGoogle Scholar
13. Lack, Stephen. A Quillen model structure for bicategories. K-Theory 33(3):185197, 2004.CrossRefGoogle Scholar
14. Leroy, O.. Sur une notion de 3-catégorie adaptée a l'homotopie. Prepublication AGATA, Univ. Montpelier II, 1994.Google Scholar
15. Lane, Saunders Mac and Paré, Robert. Coherence for bicategories and indexed categories. J. Pure Appl. Algebra 37(1):5980, 1985.Google Scholar
16. Makkai, Michael. Lecture at CT2009 conference, 4 July 2009.Google Scholar
17. Moerdijk, Ieke and Svensson, Jan-Alve. Algebraic classification of equivariant homotopy 2-types. I. J. Pure Appl. Algebra 89(1–2):187216, 1993.CrossRefGoogle Scholar
18. Street, Ross. Categorical structures. In Handbook of algebra 1, pages 529577. North-Holland, Amsterdam, 1996.CrossRefGoogle Scholar
19. Thomason, R. W.. Cat as a closed model category. Cahiers Topologie Géom. Différentielle 21(3):305324, 1980.Google Scholar
20. Verity, D.. Enriched Categories, Internal Categories, and Change of Base. PhD thesis, University of Cambridge, 1992.Google Scholar