Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T23:34:25.856Z Has data issue: false hasContentIssue false

Motivic zeta functions in additive monoidal categories

Published online by Cambridge University Press:  08 December 2011

Kenichiro Kimura
Affiliation:
Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki, 305-8571 [email protected]
Shun-ichi Kimura
Affiliation:
Department of Mathematics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 [email protected]
Nobuyoshi Takahashi
Affiliation:
Department of Mathematics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 [email protected]
Get access

Abstract

Let C be a pseudo-abelian symmetric monoidal category, and X a Schur-finite object of C. We study the problem of rationality of the motivic zeta function ζx(t) of X. Since the coefficient ring is not a field, there are several variants of rationality — uniform, global, determinantal and pointwise rationality. We show that ζx(t) is determinantally rational, and we give an example of C and X for which the motivic zeta function is not uniformly rational.

Type
Research Article
Copyright
Copyright © ISOPP 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Atiyah, M.: Power Operations in K-theory, Quart. J. ath. Oxford. Ser. 17 (1966) 165193CrossRefGoogle Scholar
2.Bourbaki, N.: Éléments de mathématique. Part I. Les structures fondamentales de l'analyse. Livre III. Topologie générale. Chapitres I et II. Actual. Sci. Ind. 858. Hermann & Cie., Paris, 1940. viii+132+II pp.Google Scholar
3.Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitres 1 à 3. Hermann, Paris 1970 xiii+635 pp.Google Scholar
4.Deligne, P.: Catégories tensorielles, Mosc. Math. J. 2(2002), no. 2, 227248.CrossRefGoogle Scholar
5.Del Padrone, A., Mazza, C.: Schur-finite motives and trace identities, Boll. Unione Mat. Ital. 2(2009), 3744.Google Scholar
6.Fulton, W., Harris, J.: Representation Theory. Springer GTM 129.Google Scholar
7.Kapranov, M.: The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint(arXiv: math.AG/0001005).Google Scholar
8.Kimura, S.: Chow groups are finite dimensional, in some sense, Math. Ann. 331(2005), no. 1, 173201.CrossRefGoogle Scholar
9.Kimura, S.: On the characterization of Alexander schemes, Compos. Math. 92(1994), no. 3, 273284.Google Scholar
10.Larsen, M., Lunts, V. A.: Motivic measures and stable birational geometry, Mosc. Math. J. 3(2003), no. 1, 8595.CrossRefGoogle Scholar
11.Larsen, M., Lunts, V. A.: Rationality criteria for motivic zeta functions, Compos. Math. 140(2004), no. 6, 15371560.CrossRefGoogle Scholar
12.Macdonald, I.G.: The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc. 58(1962), 563568.CrossRefGoogle Scholar
13.Mazza, C.: Schur functors and motives, K-Theory 33(2004), no. 2, 89106.CrossRefGoogle Scholar
14.Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97(1989), no. 3, 613670.CrossRefGoogle Scholar