Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T20:40:54.117Z Has data issue: false hasContentIssue false

Equivariant KK-theory for generalised actions and Thom isomorphism in groupoid twisted K-theory

Published online by Cambridge University Press:  15 November 2013

Get access

Abstract

We develop equivariant KK–theory for locally compact groupoid actions by Morita equivalences on real and complex graded C*-algebras. Functoriality with respect to generalised morphisms and Bott periodicity are discussed. We introduce Stiefel-Whitney classes for real or complex equivariant vector bundles over locally compact groupoids to establish the Thom isomorphism theorem in twisted groupoid K–theory.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alekseev, A., Meinrenken, E., Dirac structures and Dixmier-Douady bundles, Int. Math. Res. Not. IMRN 4 (2012), 904956.CrossRefGoogle Scholar
2.Atiyah, M. F., Bott, R., Shapiro, A., Clifford modules, Topology 3 (1964), 338.CrossRefGoogle Scholar
3.Blackadar, B., K-Theory for operator algebras, Mathematical Sciences Research Institute Publications 5, Springer-Verlag, New York, 1986.CrossRefGoogle Scholar
4.Carey, A. L., Wang, B.-L., Thom isomorphism and push-forward map in twisted K-theory, J. K-Theory 1(2) (2008), 357393.CrossRefGoogle Scholar
5.Cuntz, J., Skandalis, G., Mapping cones and exact sequences in KK-theory, J. Operator Theory, 15(1) (1986), 163180.WGoogle Scholar
6.Donovan, P., Karoubi, M., Graded Brauer groups and K-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 525.CrossRefGoogle Scholar
7.Hilsum, M., Skandalis, G., Morphismes K-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov (d'après une conjecture d'A. Connes), Ann. Sci. École Norm. Sup. (4) 20(3) (1987), 325390.CrossRefGoogle Scholar
8.Husemöller, D., Fibre bundles, 3rd ed., Graduate Texts in Mathematics 20, Springer-Verlag, New York, 1994.Google Scholar
9.Jensen, K. K., Thomsen, K., Elements of KK-theory, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1991.Google Scholar
10.Karoubi, M., K-theory, Classics in Mathematics, Springer-Verlag, Berlin, 2008.Google Scholar
11.Karoubi, M., Twisted K-theory—old and new, K-theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp 117149.CrossRefGoogle Scholar
12.Kasparov, G. G., The operator K-functor and extensions of C*-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44(3) (1980), 571–636, 719.Google Scholar
13.Kasparov, G. G., Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91(1) (1988), 147201.CrossRefGoogle Scholar
14.Kumjian, A., Fell bundles over groupoids, Proc. Amer. Math. Soc. 126(4) (1998), 11151125.CrossRefGoogle Scholar
15.Kumjian, A., Muhly, P. S., Renault, J. N., Williams, D. P., The Brauer group of a locally compact groupoid, Amer. J. Math. 120(5) (1998), 901954.CrossRefGoogle Scholar
16.Le Gall, P.-Y., Théorie de Kasparov équivariante et groupoïdes. I, K-Theory 16(4) (1999), 361390.CrossRefGoogle Scholar
17.Moutuou, E. M., The graded Brauer group of a groupoid with involution, eprint (2012).Google Scholar
18.Moutuou, E. M., On groupoids with involutions and their cohomology, New York J. Math. 19 (2013), 729792.Google Scholar
19.Moutuou, E. M., Twisted groupoid KR-Theory, Ph.D. thesis, Université de Lorraine - Metz, and Universität Paderborn, 2012.Google Scholar
20.Plymen, R. J., Strong Morita equivalence, spinors and symplectic spinors, J. Operator Theory 16(2) (1986), 305324.Google Scholar
21.Schröder, H., K-theory for real C*-algebras and applications, Pitman Research Notes in Mathematics Series 290, Longman Scientific & Technical, Harlow, 1993.Google Scholar
22.Skandalis, G., Some remarks on Kasparov theory, J. Funct. Anal. 56(3) (1984), 337347.CrossRefGoogle Scholar
23.Tu, J.-L., The Baum–Connes conjecture for groupoids, C*-algebras (Münster, 1999), Springer, Berlin, 2000, pp 227242.CrossRefGoogle Scholar
24.Tu, J.-L., Twisted K-theory and Poincaré duality, Trans. Amer. Math. Soc. 361(3) (2009), 12691278,CrossRefGoogle Scholar
25.Tu, J.-L., Xu, Ping, Laurent-Gengoux, C., Twisted K-theory of differentiable stacks, Ann. Sci. École Norm. Sup. (4) 37(6) (2004), 841910.CrossRefGoogle Scholar