Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T18:38:00.871Z Has data issue: false hasContentIssue false

Versal Deformations of Leibniz Algebras

Published online by Cambridge University Press:  03 June 2008

Alice Fialowski
Affiliation:
Eötvös Loránd University, Budapest, Hungary, [email protected].
Ashis Mandal
Affiliation:
Indian Statistical Institute, Kolkata, India, [email protected].
Goutam Mukherjee
Affiliation:
Indian Statistical Institute, Kolkata, India, [email protected]
Get access

Abstract

In this work we consider deformations of Leibniz algebras over a field of characteristic zero. The main problem in deformation theory is to describe all non-equivalent deformations of a given object. We give a method to solve this problem completely, namely work out a construction of a versal deformation for a given Leibniz algebra, which induces all non-equivalent deformations and is unique on the infinitesimal level.

Type
Research Article
Copyright
Copyright © ISOPP 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Albeverio, S., Ayupov, Sh. A. and Omirov, B.A.: On nilpotent and simple Leibniz algebras, Comm. Alg. 33 (2005), 159172CrossRefGoogle Scholar
2.Albeverio, S., Omirov, B.A. and Rakhimov, I.S.: Varieties of nilpotent complex Leibniz algebras of dimension less than five, Comm. Alg. 33 (2005), 15751585CrossRefGoogle Scholar
3.Ayupov, Sh. A. and Omirov, B.A.: On some classes of nilpotent Leibniz algebras, Siberian Math. Journal (1) 42 (2001), 1829CrossRefGoogle Scholar
4.Balavoine, D.: Deformations of algebras over a quadratic operad, Contemporary Maths. AMS 202 (1997), 207234CrossRefGoogle Scholar
5.Fialowski, A.: An example of formal deformations of Lie algebras, “NATO Conference on deformation theory of algebras and applications, Proceedings”,Kluwer,Dordrecht(1988)375401Google Scholar
6.Fialowski, A. and Fuchs, D.: Construction of miniversal Deformations of Lie Algebras, Journal of Functional Analysis 161 (1999), 76110CrossRefGoogle Scholar
7.Fialowski, A. and Penkava, M.: Versal Deformations of Three-dimensional Lie Algebras as L algebras, Comm. Cont. Math. 7 (2005), 145165CrossRefGoogle Scholar
8.Gerstenhaber, M.: On the Deformations of Rings and Algebras, Ann. of Math. 79 (1964), 59103CrossRefGoogle Scholar
9.Gerstenhaber, M.: On the Deformations of Rings and Algebras, Ann. of Math. 84 (1966), 119CrossRefGoogle Scholar
10.Gerstenhaber, M.: On the Deformations of Rings and Algebras, Ann. of Math. 88 (1968), 134CrossRefGoogle Scholar
11.Gerstenhaber, M.: On the Deformations of Rings and Algebras, Ann. of Math. 99 (1974), 257276CrossRefGoogle Scholar
12.Gerstenhaber, M.: The Cohomology Structure of an Associative Ring, Ann. of Math. 78 (1963), 267288CrossRefGoogle Scholar
13.Goldman, W.M. and Millson, J.J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Etudes Sci. Pub. Math. 67 (1988), 4396CrossRefGoogle Scholar
14.Harrison, D. K.: Commutative algebras and cohomology, Trans. Amer. Math. Soc. 104 (1962), 191204CrossRefGoogle Scholar
15.Hartshorne, R.: “Algebraic Geometry”, Springer-Verlag, Berlin/New York, 1977CrossRefGoogle Scholar
16.Illusie, L.: “Complexe cotangent et deformations I”, Lecture Notes in Math. 239, Springer- Verlag, Berlin/New York, 1971Google Scholar
17.Kontsevich, M.: “Topics in Algebra: Deformation Theory”, Lecture Notes, Univ. of California Press, Berkeley, CA, 1994Google Scholar
18.Laudal, O.A.: “Formal moduli of algebraic structures”, Lecture Notes in Math. 754, Springer-Verlag, Berlin/New York, 1979Google Scholar
19.Loday, J.-L.: Une version non commutative des algèbres de Lie: les algebrès de Leibniz, Enseign. Math. 39 (2), No.3–4 (1993), 269293Google Scholar
20.Loday, J.-L.: Overview on Leibniz algebras, dialgebras and their homology, Fields Institute Communications 17 (1997), 91102Google Scholar
21.Loday, J.-L.: Dialgebras and related operads, Lecture Notes in Math. 1763 (2001), 766Google Scholar
22.Loday, J.-L. and Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology, Math.Ann. 296 (1993), 139158CrossRefGoogle Scholar
23.Mandal, A.: An Example of Constructing Versal Deformation for Leibniz Algebras, To appear in Comm. Alg., arXiv : math.QA/071212.2096v1 13 Dec 2007Google Scholar
24.Palamodov, V.P.: Deformations of complex spaces, Russian Math. Surveys 31 (1976)CrossRefGoogle Scholar
25.Schlessinger, M.: Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208222CrossRefGoogle Scholar