Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T23:27:20.106Z Has data issue: false hasContentIssue false

On lambda operations on mixed motives

Published online by Cambridge University Press:  23 May 2013

Get access

Abstract

We study the natural λ-ring structure on the Grothendieck ring of the triangulated category of mixed motives. Basic properties of a natural notion of characteristic-like series are developed in the context of equivariant objects.

Type
Research Article
Copyright
Copyright © ISOPP 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cohomologie l–adique et Fonctions L.Séminaire de Géométrie Algébrique du Bois-Marie 1965–1966 (SGA 5), dirigé par A. Grothendieck avec la collaboration de I. Bucur, C. Houzel, L. Illusie, J.-P. Jouanolou et J.-P. Serre. Lecture Notes in Mathematics 589, Springer-Verlag, Berlin, 1977Google Scholar
2.Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. Lecture Notes in Mathematics 225, Springer-Verlag, Berlin, 1971Google Scholar
3.André, Yves, Une introduction aux motifs (motifs purs, motifs mixtes, périodes)Panoramas et Synthèses [Panoramas and Syntheses] 17, Société Mathématique de France, Paris, 2004.Google Scholar
4.Atiyah, M. F., Power operations in K-theory, Quart. J. Math. Oxford Ser. (2) 17 (1966), 165193.Google Scholar
5.Atiyah, M. F., Tall, D. O., Group representations, λ-rings and the J-homomorphism, Topology 8 (1969), 253297.CrossRefGoogle Scholar
6.Biglari, S., Motives of Reductive Groups, Amer. J. Math. 134(1) (2012), 235257.CrossRefGoogle Scholar
7.Biglari, S., On finite dimensionality of mixed Tate motives, J. K-Theory 4(1) (2009), 145161.Google Scholar
8.Biglari, S., A Künneth formula in tensor triangulated categories, J. Pure Appl. Algebra 210(3) (2007), 645650.Google Scholar
9.Bondarko, M. V., Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura, J. Inst. Math. Jussieu 8(1) (2009), 3997.Google Scholar
10.Bourbaki, N., Éléments de mathématique. Algèbre. Chapitres 4 à 7, Masson, Paris, 1981.Google Scholar
11.Davydov, A. A., Monoidal categories, J. Math. Sci. (New York) 88(4) (1998), 457519.Google Scholar
12.Deligne, P., Catégories tannakiennes, The Grothendieck Festschrift II, Progr. Math. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111195.Google Scholar
13.Deligne, P., Catégories tensorielles, Mosc. Math. J. 2(2) (2002), 227248.Google Scholar
14.Deligne, P., La catégorie des représentations du groupe symétrique St, lorsque t n'est pas un entier naturel, Tata Inst. Fund. Res., Mumbai, 2007, pp. 209273.Google Scholar
15.Dold, A., Puppe, D., Duality, trace, and transfer, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), 1980, pp. 81102.Google Scholar
16.Dress, A. W. M., Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. (2) 102(2) (1975), 291325.Google Scholar
17.Gillet, H., Soulé, C., Descent, motives and K-theory, J. Reine Angew. Math. 478 (1996), 127176.Google Scholar
18.Guletskii, V. I., Zeta functions in triangulated categories, Math. Notes 87(3–4) (2010), 345354.Google Scholar
19.Heinloth, F., A note on functional equations for zeta functions with values in Chow motives, Ann. Inst. Fourier (Grenoble) 57(6) (2007), 19271945.Google Scholar
20.Huber, A., Realization of Voevodsky's motives, J. Algebraic Geom. 9(4) (2000), 755799, Corrigendum: ibid. 13(1) (2004), 195–207.Google Scholar
21.Kahn, B., Zeta functions and motives, Pure Appl. Math. Q. 5(1) (2009), 507570.Google Scholar
22.Kapranov, M., The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, 2000, arXiv:math/0001005.Google Scholar
23.Kimura, S.-I., Chow groups are finite dimensional, in some sense, Math. Ann. 331(1) 2005, 173201.CrossRefGoogle Scholar
24.Knutson, D., λ-rings and the representation theory of the symmetric group, Lecture Notes in Mathematics 308, Springer-Verlag, Berlin, 1973.Google Scholar
25.Levine, M., Tate motives and the vanishing conjectures for algebraic K-theory, In Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 167188.Google Scholar
26.Liulevicius, A., Arrows, symmetries and representation rings, J. Pure Appl. Algebra 19 (1980), 259273.Google Scholar
27.Macdonald, I. G, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, Oxford University Press, New York, 1995.Google Scholar
28.Manin, Ju. I, Correspondences, motifs and monoidal transformations, Math. USSR-Sb. 6 (1968), 439470,Google Scholar
29.May, J. P., The additivity of traces in triangulated categories, Adv. Math. 163(1) (2001), 3473.Google Scholar
30.Mazza, C., Weibel, C., Schur-finiteness in λ-rings, Journal of Algebra 374 (2013), 6678.Google Scholar
31.Saavedra Rivano, N., Catégories Tannakiennes, Lecture Notes in Mathematics 265, Springer-Verlag, Berlin, 1972.Google Scholar
32.Šermenev, A. M., The Motif of an Abelian variety, Functional Anal. Appl. 8 (1974), 4753.Google Scholar
33.Serre, J.-P., Représentations linéaires des groupes finis, 2ième éd., Hermann, Paris, 1971.Google Scholar
34.Swan, R. G., A splitting principle in algebraic K-theory, Representation theory of finite groups and related topics (Proc. Sympos. Pure Math. XXI, Univ. Wisconsin, Madison, Wis., 1970), Amer. Math. Soc., Providence, R.I., 1971, pp. 155159.Google Scholar
35.Voevodsky, V., Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188238,Google Scholar
36.Voevodsky, V., Motives over simplicial schemes, J. K-Theory 5(1) (2010), 138.CrossRefGoogle Scholar