Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T01:16:56.141Z Has data issue: false hasContentIssue false

Cyclic homology, Serre's local factors and λ-operations

Published online by Cambridge University Press:  25 July 2014

Alain Connes
Affiliation:
Collège de France, 3 rue d'Ulm, Paris F-75005, France, I.H.E.S. and Ohio State University, [email protected]
Caterina Consani
Affiliation:
Department of Mathematics, The Johns Hopkins University, Baltimore, MD 21218, [email protected]
Get access

Abstract

We show that for a smooth, projective variety X defined over a number field K, cyclic homology with coefficients in the ring , provides the right theory to obtain, using λ-operations, Serre's archimedean local factors of the complex L-function of X as regularized determinants.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Beilinson, A., Higher regulators and values of L-functions. (Russian) Current problems in mathematics 24, 181238. Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984.Google Scholar
2.Bloch, S., Kato, K., L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift I, 333400, Progr. Math. 86, Birkhauser Boston, Boston, MA, 1990.Google Scholar
3.Connes, A., Spectral sequence and homology of currents for operator algebras, Mathematisches Forschunginstitut oberwolfach, Tagungsbericht 42/81.Google Scholar
4.Connes, A., Cohomologie cyclique etfoncteurs Extn. C. R. Acad. Sci. Paris Sér. I Math. 296(23) (1983), 953958.Google Scholar
5.Connes, A., Noncommutative differential geometry. Inst.Hautes Études Sci. Publ.Math. No. 62 (1985), 257360.Google Scholar
6.Connes, A., Noncommutative geometry, Academic Press (1994).Google Scholar
7.Consani, C., Double complexes and Euler L-factors. Compositio Math. 111(3) (1998), 323358.Google Scholar
8.Deligne, P., Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math. 33 (1979) part II, 313346.Google Scholar
9.Demazure, M., Gabriel, P., Groupes algébriques, Tome I. (French) Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970.Google Scholar
10.Deninger, C., On the Γ-factors attached to motives, Invent. Math. 104 (1991), 245261.Google Scholar
11.Deninger, C., Motivic L-functions and regularized determinants. Motives (Seattle, WA, 1991), 707743, Proc. Sympos. Pure Math. 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.Google Scholar
12.Feigin, B. and Tsygan, B., Additive K-theory, Lecture notes in Math. 1289, Springer-Verlag, 1987, 97209.Google Scholar
13.Gillman, L., Jerison, M., Rings of continuous functions. The University Series in Higher Mathematics D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York 1960.Google Scholar
14.Grothendieck, A., Produits tensoriels topologiques et espaces nuclaires. Mem. Am. Math. Soc. 16 (1955), 140 pp.Google Scholar
15.Grothendieck, A., On the de Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95103.Google Scholar
16.Görtz, U., Wedhorn, T., Algebraic Geometry I, Vieweg + Teubner (2010).CrossRefGoogle Scholar
17.Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York Heidelberg Berlin 1977.Google Scholar
18.Hood, C., Jones, J., Some properties of cyclic homology groups, K-Theory 1 (1987), 361384.Google Scholar
19.Karoubi, M., Homologie cyclique et K-théorie. (French) [Cyclic homology and K-theory] Astérisque 149 (1987), 147 pp.Google Scholar
20.Kontsevich, M., Solomon Lefschetz Memorial Lecture series: Hodge structures in non-commutative geometry. Notes by Ernesto Lupercio. Contemp. Math. 462, Noncommutative geometry in mathematics and physics 121, Amer. Math. Soc., Providence, RI, 2008.Google Scholar
21.Liu, Q., Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics 6. Oxford Science Publications. Oxford University Press, Oxford, 2002.Google Scholar
22.Loday, J.L., Quillen, D, Homologie cyclique et homologie de l'algèbre de Lie des matrices. (French) [Cyclic homology and homology of the Lie algebra of matrices] C. R. Acad. Sci. Paris Sr. I Math. 296(6) (1983), 295297.Google Scholar
23.Loday, J.L., Cyclic homology. Grundlehren der Mathematischen Wissenschaften 301. Springer-Verlag, Berlin, 1998.Google Scholar
24.Manin, Yu. I., Lectures on zeta functions and motives (according to Deninger and Kurokawa). Columbia University Number Theory Seminar (New York, 1992). Astérisque 228(4) (1995), 121-163.Google Scholar
25.Oesterlé, J., Nombres de Tamagawa et groupes unipotents. Invent. Math. 78 (1984), 1388.Google Scholar
26.Rinehart, G., Differential forms on general commutative algebras. Trans. AMS 108 (1963), 195222.Google Scholar
27.Ray, D.B., Singer, I.M., Analytic torsion for complex manifolds. Ann. Math. 98 (1973), 154177.Google Scholar
28.Schneider, P., Introduction to the Beilinson conjectures. Beilinson's conjectures on special values of L-functions. 135, Perspect. Math. 4, Academic Press, Boston, MA, 1988.Google Scholar
29.Serre, J. P., Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures). Sém. Delange-Pisot-Poitou, exp. 19, 1969/1970.Google Scholar
30.Serre, J. P., Géométrie algébrique et géométrie analytique. (French) Ann. Inst. Fourier, Grenoble 6 (19551956), 142.Google Scholar
31.Tsygan, B. L., Homology of matrix Lie algebras over rings and the Hochschild homology. (Russian) Uspekhi Mat. Nauk 38 (1983), no. 2(230), 217218.Google Scholar
32.Weibel, C., An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge, 1994. xiv + 450 pp.Google Scholar
33.Weibel, C., Cyclic Homology for schemes. Proc. Amer. Math. Soc. 124(6) (1996), 16551662.CrossRefGoogle Scholar
34.Weibel, C., The Hodge filtration and cyclic homology. K-Theory 12(2) (1997), 145164.Google Scholar
35.Weibel, C., Geller, S., Etale descent for Hochschild and cyclic homology, Comment. Math. Helv. 66 (1991), 368388.Google Scholar