Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T20:04:23.348Z Has data issue: false hasContentIssue false

1-Homotopy of Chevalley Groups

Published online by Cambridge University Press:  27 January 2010

Matthias Wendt
Affiliation:
Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstraße 1, 79104, Freiburg im Breisgau, Germany, [email protected]
Get access

Abstract

In this paper, we describe the sheaves of 1-homotopy groups of a simply-connected Chevalley group G; these sheaves can be identified with the sheafification of certain unstable Karoubi-Villamayor K-groups.

Type
Research Article
Copyright
Copyright © ISOPP 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe83.Abe, E.. Whitehead groups of Chevalley groups over polynomial rings. Comm. Alg. 11 (1983), 12711307.CrossRefGoogle Scholar
BCW76.Bass, H., Connell, E.H. and Wright, D.L.. Locally polynomial algebras are symmetric algebras. Invent. Math. 38 (1976), 279299.Google Scholar
BG73.Brown, K.S. and Gersten, S.M.. Algebraic K-theory as generalized sheaf cohomology. In: Algebraic K-theory I: Higher K-theories, Lecture Notes in Math. 341, pp. 266292. Springer (1973).Google Scholar
Bor91.Borel, A.. Linear algebraic groups. Graduate texts in mathematics 126. Springer (1991).Google Scholar
Che55.Chevalley, C.. Sur certains groupes simples. Tohoku Math. J.(2) 7(1955), 1466.Google Scholar
CHSW08.Cortiñas, G., Haesemeyer, C., Schlichting, M. and Weibel, C.A.. Cyclic homology, cdh-cohomology and negative K-theory. Ann. Math. 167 (2008), 125.Google Scholar
Con02.Conrad, B.D.. A modern proof of Chevalley's theorem on algebraic groups. J. Ramanujan Math. Soc. 17 (2002), 118.Google Scholar
CTS87.Colliot-Thélène, J.-L. and Sansuc, J.-J.. Principal homogeneous spaces under flasque tori: Applications. J. Algebra 106 (1987), 148205.Google Scholar
Dut99.Dutta, S.P.. A theorem on smoothness – Bass-Quillen, Chow groups and intersection multiplicities of Serre. Trans. Amer. Math. Soc. 352 (1999), 16351645.Google Scholar
Ger73.Gersten, S.M.. Higher K-theory of rings. In: Algebraic K-theory I: Higher Ktheories, Lecture Notes in Math. 341, 342. Springer (1973).Google Scholar
Gil08.Gille, S.. The first Suslin homology group of a split simply-connected semisimple algebraic group. Preprint (2008).CrossRefGoogle Scholar
GJ99.Goerss, P.G. and Jardine, J.F.. Simplicial Homotopy Theory. Progress in Mathematics 174, Birkhäuser (1999).Google Scholar
GMV91.Grunewald, F.J., Mennicke, J. and Vaserstein, L.. On symplectic groups over polynomial rings. Math. Z. 206 (1991), 3556.Google Scholar
Hir03.Hirschhorn, P.S.. Model categories and their localizations. Mathematical Surveys and Monographs 99. American Mathematical Society (2003).Google Scholar
HT08.Hutchinson, K. and Tao, L.. A note on the Milnor-Witt K-theory and a theorem of Suslin. Comm. Alg. 36 (2008), 27102718.CrossRefGoogle Scholar
Jar81.Jardine, J.F.. Algebraic homotopy theory, groups and K-theory. PhD thesis, University of British Columbia, 1981. Available as http://www.math.uwo.ca/~jardine/papers/preprints/Jardine-thesis.pdfCrossRefGoogle Scholar
Jar83.Jardine, J.F.. On the homotopy groups of algebraic groups. J. Algebra 81 (1983), 180201.CrossRefGoogle Scholar
Jar00.Jardine, J.F.. Motivic symmetric spectra. Doc. Math. 5 (2000), 445552.Google Scholar
Jou73.Jouanolou, J.-P.. Une suite exacte de Mayer-Vietoris en K-théorie algébrique. In: Algebraic K-theory I: Higher K-theories, Lecture Notes in Math. 341, 293316. Springer (1973).Google Scholar
Kar73.Karoubi, M.. Périodicité de la K-théorie hermitienne. In: Algebraic K-theory III: Hermitian K-theory and Geometric Applications, Lecture Notes in Math. 343, 301411. Springer (1973).Google Scholar
KS82.Kopeiko, V.I. and Suslin, A.A.. Quadratic modules and the orthogonal group over polynomial rings. J. Math. Sci. 20 (1982), 26652691.Google Scholar
KV69.Karoubi, M. and Villamayor, O.. Foncteurs Kn en algèbre et en topologie. C.R. Acad. Sci. Paris Sér. A-B 269 (1969), A416A419.Google Scholar
Lam06.Lam, T.-Y.. Serre's problem on projective modules. Monographs in Mathematics. Springer (2006).Google Scholar
Lin81.Lindel, H.. On the Bass-Quillen conjecture concerning projective modules over polynomial rings. Invent. Math. 65 (1981), 319323.Google Scholar
Mat69.Matsumoto, H.. Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. (4) 2 (1969), 162.Google Scholar
Mor06a.Morel, F.. 1-algebraic topology. In: International Congress of Mathematicians II, pp. 10351059. European Mathematical Society (2006).Google Scholar
Mor06b.Morel, F.. 1-algebraic topology over a field. Preprint (2006).Google Scholar
Mor07.Morel, F.. 1-classification of vector bundles over smooth affine schemes. Preprint (2007).Google Scholar
MV99.Morel, F. and Voevodsky, V.. 1-homotopy theory of schemes. Publ. Math. Inst. Hautes Études Sci. 90 (1999), 45143.CrossRefGoogle Scholar
Plo93.Plotkin, E.. Surjective stabilization of the K 1-functor for some exceptional Chevalley groups. J. Soviet. Math. 64 (1993), 751766.Google Scholar
Pop89.Popescu, D.. Polynomial rings and their projective modules. Nagoya Math. J. 113 (1989), 121128.Google Scholar
PV96.Plotkin, E. and Vavilov, N.. Chevalley groups over commutative rings I: Elementary calculations. Acta Appl. Math. 45 (1996), 73113.Google Scholar
Qui76.Quillen, D.G.. Projective modules over polynomial rings. Invent. Math. 36 (1976), 167171.CrossRefGoogle Scholar
Ste79.Stein, M.R.. Stability theorems for K 1, K 2 and related functors modeled on Chevalley groups. Japan. J. Math.(N.S.) 4 (1978), 77108.Google Scholar
Sus77.Suslin, A.A.. The structure of the special linear group over rings of polynomials. Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 235252.Google Scholar
Sus87.Suslin, A.A.. Torsion in K 2 of fields. K-Theory 1 (1987), 529.Google Scholar
Vor81.Vorst, A.C.F.. The general linear group of polynomial rings over regular rings. Comm. Alg. 9 (1981), 499509.Google Scholar
Wei89.Weibel, C.A.. Homotopy algebraic K-theory. In: Algebraic K-theory and Algebraic Number Theory, Contemporary Mathematics 83, 461488. American Mathematical Society (1989).Google Scholar
Wen07.Wendt, M.. On fibre sequences in motivic homotopy theory. PhD thesis, Universität Leipzig (2007).Google Scholar