Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T18:25:28.974Z Has data issue: false hasContentIssue false

A multi-method approach to study robustness of social–ecological systems: the case of small-scale irrigation systems

Published online by Cambridge University Press:  24 June 2013

MARCO A. JANSSEN*
Affiliation:
Center for the Study of Institutional Diversity, Arizona State University, Tempe, AZ, USA
JOHN M. ANDERIES*
Affiliation:
Center for the Study of Institutional Diversity, Arizona State University, Tempe, AZ, USA

Abstract:

Elinor Ostrom was a leader in using multiple methods to perform institutional analysis. In this paper, we discuss how a multi-method approach she pioneered may be used to study the robustness of social–ecological systems. We synthesize lessons learned from a series of studies on small-scale irrigation systems in which we use case-study analysis, experimental methods in laboratory and field settings, and mathematical models. The accumulated insights show the importance of creating institutional arrangements that fit the human ecology within the biophysical constraints of the system. The examples of work based on multiple methods approaches presented here highlight several lessons. For example, experimental work helps us better understand the details of how the ability to maintain trust relationships, low levels of inequality, and low transaction costs of coordination are critical for success. Likewise, the integration of case-study analysis and modeling helps us better understand how systems that can leverage biophysical characteristics to help address challenges of monitoring, sanctioning, and coordination may be able to increase their chances of success.

Type
Research Article
Copyright
Copyright © Millennium Economics Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderies, J. M. (2006), ‘Robustness, institutions, and large-scale change in social-ecological systems: The Hohokam of the Phoenix basin’, Journal of Institutional Economics, 2 (2): 133155.Google Scholar
Anderies, J. M., Janssen, M. A., Lee, A., and Wasserman, H. (in press), ‘Environmental variability and collective action: Experimental insights from an irrigation game’, Ecological Economics.Google Scholar
Anderies, J. M., Janssen, M. A., and Ostrom, E. (2004), ‘A framework to analyze the robustness of social-ecological systems from an institutional perspective’, Ecology and Society, 9 (1): 18.Google Scholar
Andrew, N. L., Béné, C., Hall, S. J., Allison, E. H., Heck, S., and Ratner, B. D. (2007), ‘Diagnosis and management of small-scale fisheries in developing countries’, Fish and Fisheries, 8 (3): 227240.Google Scholar
Araral, E. (2009), ‘What explains collective action in the commons? Theory and evidence from the Philippines’, World Development, 37 (3): 687697.CrossRefGoogle Scholar
Araral, E. (2013), ‘Does geography matter to institutional choice? A comparative study of ancient commons’, Geoforum, 44: 224231.CrossRefGoogle Scholar
Barker, R. and Molle, F. (2004), Evolution of irrigation in South and Southeast Asia. Technical report, IWMI. Comprehensive Assessment Research, No. 5.Google Scholar
Bastakoti, R. C. and Shivakoti, G. P. (2012), ‘Rules and collective action: An institutional analysis of the performance of irrigation systems in Nepal’, Journal of Institutional Economics, 8 (2): 225246.Google Scholar
Bodin, Ö., Crona, B., and Ernstson, H. (2006), ‘Social networks in natural resource management: What is there to learn from a structural perspective’, Ecology and Society, 11 (2): r2.Google Scholar
Carlson, J. M. and Doyle, J. (2002), ‘Complexity and robustness’, Proceedings of the National Academy of Science, 99 (suppl. 1): 25382545.Google Scholar
Cifdaloz, O., Regmi, A., Anderies, J. M., and Rodriguez, A. A. (2010), ‘Robustness, vulnerability, and adaptive capacity in small-scale social-ecological systems: The Pumpa irrigation system in Nepal’, Ecology and Society, 15 (3): 39.Google Scholar
Cinner, J., Marnane, M. J., McClanahan, T. R., and Almany, G. R. (2006), ‘Periodic closures as adaptive coral reef management in the Indo-Pacific’, Ecology and Society, 11 (1): 31.Google Scholar
Cox, M. (2012), ‘Diagnosing institutional fit: A formal perspective’, Ecology and Society, 17 (4): 54.Google Scholar
Cox, M., Arnold, G., and Villamayor Tomás, S. (2010), ‘A review of design principles for community-based natural resource management’, Ecology and Society, 15 (4): 38.Google Scholar
Csete, M. E. and Doyle, J. C. (2002), ‘Reverse engineering of biological complexity’, Science, 295: 16641669.CrossRefGoogle ScholarPubMed
Duit, A. and Galaz, V. (2008), ‘Governance and complexity – emerging issues for governance theory’, Governance, 21 (3): 311335.Google Scholar
Ekstrom, J. A. and Young, O. R. (2009), ‘Evaluating functional fit between a set of institutions and an ecosystem’, Ecology and Society, 14 (2): 16.Google Scholar
Folke, C. (2006), ‘Resilience: The emergence of a perspective for social – ecological systems analyses’, Global Environmental Change, 16 (3): 253267.Google Scholar
Folke, C., Hahn, T., Olsson, P., and Norberg, J. (2005), ‘Adaptive governance of social-ecological systems’, Annual Review of Environmental Resources, 30: 441473.Google Scholar
Folke, C., , L. Pritchard Jr., Berkes, F., Colding, J., and Svedin, U. (2007), ‘The problem of fit between ecosystems and institutions: Ten years later’, Ecology and Society, 12 (1): 30.CrossRefGoogle Scholar
Gallopın, G. C. (2006), ‘Linkages between vulnerability, resilience, and adaptive capacity’, Global Environmental Change, 16 (3): 293303.Google Scholar
Gordon, H. S. (1954), ‘The economic theory of a common-property resource: The fishery’, Journal of Political Economy, 62 (2): 124142.Google Scholar
Hardin, G. (1968), ‘The tragedy of the commons’, Science, 162: 12431248.Google Scholar
Holling, C. S. (1973), ‘Resilience and stability of ecological systems’, Annual Review of Ecology and Systematics, 4: 123.Google Scholar
Hunt, R. C. (1988), ‘Size and structure of authority in canal irrigation systems’, Journal of Anthropological Research, 44 (4): 335355.Google Scholar
IPCC (Intergovernmental Panel on Climate Change) (2007), Climate change: Impacts, adaptation and vulnerability, contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Technical report, Intergovernmental Panel on Climate Change.Google Scholar
Janssen, M. A., Bousquet, F., Cardenas, J. C., Castillo, D., and Worrapimphong, K. (2012), ‘Field experiments of irrigation dilemmas’, Agricultural Systems, 109: 6575.Google Scholar
Kiser, L. and Ostrom, E. (1982), ‘The three worlds of action: A meta-theoretical synthesis of institutional approaches’, in Ostrom, E. (ed.), Strategies of Political Inquiry, Beverly Hills, CA: Sage Publications, pp. 179222.Google Scholar
Lam, W. F. (1998), Governing Irrigation Systems in Nepal: Institutions, Infrastructure, and Collective Action, Oakland, CA: ICS Press.Google Scholar
Lansing, J. S. (1991), Priests and Programmers: Technologies of Power in the Engineered Landscape of Bali, Princeton University Press.Google Scholar
Lyson, T. A. (2004), Civic Agriculture: Reconnecting Farm, Food, and Community, Medford, MA: Tufts University Press.Google Scholar
McCay, B. J. and Acheson, J. M. (eds.) (1987), The Question of the Commons: The Culture & Ecology of Communal Resources, Tuscan: University of Arizona Press.Google Scholar
McIntyre, B. D., Herren, H. R., Wakhungu, J., and Watson, R. T. (eds.) (2009), International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD): Global Report. Washington, DC, USA: IAASTD.Google Scholar
Moser, S. C. and Ekstrom, J. A. (2010), ‘A framework to diagnose barriers to climate change adaptation’, Proceedings of the National Academy of Sciences, 107 (51): 2202622031.Google Scholar
Myint, T. (2012), Governing International Rivers: Polycentric Politics in the Mekong and the Rhine, Cheltenham, UK: Edward Elgar Publishing Inc.Google Scholar
Olson, M. (1965), The Logic of Collective Action: Public Goods and the Theory of Groups, Cambridge, MA: Harvard University Press.Google Scholar
Ostrom, E. (1965), Public entrepreneurship: A case study in ground water basin management, PhD dissertation, University of California-Los Angeles.Google Scholar
Ostrom, E. (1986), ‘An agenda for the study of institutions’, Public Choice, 48 (1): 325.Google Scholar
Ostrom, E. (1990), Governing the Commons: The Evolution of Institutions for Collective Action, New York, NY: Cambridge University Press.Google Scholar
Ostrom, E. (1992), Crafting Institutions for Self-Governing Irrigation Systems, San Francisco, CA: ICS Press.Google Scholar
Ostrom, E., and Gardner, R. (1993), ‘Copying with Asymmetries in the Commons: Self-Governing Irrigation Systems Can Work’, Journal of Economic Perspectives, 7 (4): 93112.Google Scholar
Ostrom, E., Lam, W.-F., and Pradhan, P. (2011), Improving Irrigation in Asia: Sustainable Performance of an Innovative Intervention in Nepal. Cheltenham, UK: Edward Elgar Publishing.Google Scholar
Paavola, J. (2007), ‘Institutions and environmental governance: A reconceptualization’, Ecological Economics, 63 (1): 93103.Google Scholar
Plummer, R. and Armitage, D. (2007), ‘A resilience-based framework for evaluating adaptive co-management: Linking ecology, economics and society in a complex world’, Ecological Economics, 61 (1): 6274.Google Scholar
Poteete, A. M., Janssen, M. A., and Ostrom, E. (2010), Working Together: Collective Action, the Commons and Multiple Methods in Practice, Princeton, NJ: Princeton University Press.Google Scholar
Pretty, J. (1999), The Living Land: Agriculture, Food and Community Regeneration in the 21st Century. London, UK: Earthscan Publications.Google Scholar
Rammel, C., Stagl, S., and Wilfing, H. (2007), ‘Managing complex adaptive systems – a co-evolutionary perspective on natural resource management’, Ecological Economics, 63 (1): 921.Google Scholar
Raymond, C. M., Bryan, B. A., MacDonald, D. H., Cast, A., Strathearn, S., Grandgirard, A., and Kalivas, T. (2009), ‘Mapping community values for natural capital and ecosystem services’, Ecological Economics, 68 (5): 13011315.Google Scholar
Scott, A. (1955), ‘The fishery: The objectives of sole ownership’, Journal of Political Economy, 63 (2): 116124.Google Scholar
Shivakoti, G. P. and Bastakoti, R. C. (2006), ‘The robustness of Montane irrigation systems of Thailand in a dynamic human-water resources interface’. Journal of Institutional Economics, 2 (2): 227247.Google Scholar
Shivakoti, G. P. and Ostrom, E. (eds.) (2002), Improving Irrigation Governance and Management in Nepal, Oakland, CA: ICS Press.Google Scholar
Stiglitz, J. E. (2012), The Price of Inequality: How Today's Divided Society Endangers our Future, New York, NY, USA: W. W. Norton & Company.Google Scholar
Thornton, P., Jones, P., Alagarswamy, A., and Andresen, J. (2009), ‘Spatial variation of crop yield responses to climate change in east Africa’, Global Environmental Change, 19: 5465.Google Scholar
Trawick, P. B. (2001), ‘Successfully governing the commons: Principles of social organization in an andean irrigation system’, Human Ecology, 29 (1): 125.CrossRefGoogle Scholar
Wallingford, H. R. (1997), Priorities for Irrigated Agriculture. Occasional Paper No. 1. Department of International Development, UK.Google Scholar
Young, O. R. (2002), The Institutional Dimensions of Environmental Change: Fit, Interplay, and Scale, Cambridge, MA, USA: MIT Press.Google Scholar