Published online by Cambridge University Press: 06 January 2011
Fasciola hepatica is the causative agent of fascioliasis, one of the most economically important helminth diseases of livestock worldwide. Traditionally, fascioliasis has been controlled by the strategic use of fasciolicidal drugs, but the emergence of resistant parasites has spurred an interest in developing vaccines as an alternative means of control. Most vaccine studies to date have evaluated conventional antigens, which are exposed to the host's immune system during the course of a natural infection. ‘Hidden’ antigens have proven to be effective vaccine candidates in other parasite species, most notably the blood-feeding nematode parasite, Haemonchus contortus, and tend to be expressed in the intestine or gut of the parasite. Fasciola hepatica is known to ingest large quantities of blood and may be vulnerable to this approach. Most, if not all, of the candidate antigens identified thus far have been membrane-bound glycoproteins which were solubilized by detergents. Here, we have attempted to employ lectins to select gut-associated glycoproteins from complex mixtures of somatic extracts of adult F. hepatica. We have conducted a comprehensive lectin-binding screen on adult histological sections with a panel of 16 fluorescently labelled lectins. Seven of the lectins bound to molecules within the gastrodermis but also bound to a range of other tissues. Within the gut tissues, jacalin and peanut lectins bound selectively to the gut lamellae and gastrodermal cells, respectively. These lectins were then used to isolate proteins from the integral membrane protein component of the adult fluke. Both lectins showed selectivity for relatively simple subsets of proteins compared to the original crude extracts.