Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T00:32:56.077Z Has data issue: false hasContentIssue false

Syphacia obvelata infections and reproduction of male domestic mice Mus musculus domesticus on a sub-Antarctic Island

Published online by Cambridge University Press:  12 April 2024

B. Pisanu
Affiliation:
Muséum National d'Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité (USM 0304, UMR 6553 CNRS–Rennes), 36 rue Geoffroy Saint-Hilaire, 75005 Paris, France
J.-L. Chapuis*
Affiliation:
Muséum National d'Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité (USM 0304, UMR 6553 CNRS–Rennes), 36 rue Geoffroy Saint-Hilaire, 75005 Paris, France
R. Périn
Affiliation:
Muséum National d'Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité (USM 0304, UMR 6553 CNRS–Rennes), 36 rue Geoffroy Saint-Hilaire, 75005 Paris, France
*
*Fax: (33 1)40 79 32 73 E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The reproductive activity of feral male mice on an island of the sub-Antarctic Kerguelen archipelago was influenced by biological factors depending on periods within the breeding season. After having controlled host reproductive activity indices for body size, i.e. age, and body condition effects, Syphacia obvelata prevalence did not vary with host reproductive status or age either during the beginning or the middle–end of the reproductive season. Considering the beginning of the breeding season, worm abundance was more pronounced in males the year following a strong winter crash of the population than in years when high over wintering survival occurred. During the middle–end of the breeding season, males with the highest reproductive status were more infected than males with a lower reproductive status in years when oldest individuals dominated the population. It is suggested that this situation was due to an endocrine related increased host susceptibility partly influenced by a change in the age structure of the population, and that an increase in worm transmission was not directly related to male activity concurrent with reproductive status, nor to population density.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2003

References

Bailey, J.A. (1968) A weight-length relationship for evaluating physical condition of cottontails. Journal of Wildlife Management 32, 835841.CrossRefGoogle Scholar
Barnard, C.J., Behnke, J.M. & Sewell, J. (1993) Social behaviour, stress and susceptibility to infection in house mice (Mus musculus): effects of duration of grouping and aggressive behaviour prior to infection on susceptibility to Babesia microti . Parasitology 107, 183192.CrossRefGoogle ScholarPubMed
Barnard, C.J., Behnke, J.M. & Sewell, J. (1994) Social behaviour and susceptibility to infection in house mice (Mus musculus): effects of group size, aggressive behaviour and status-related hormonal response prior to infection on resistance to Babesia microti . Parasitology 108, 487496.CrossRefGoogle ScholarPubMed
Barnard, C.J., Behnke, J.M. & Sewell, J. (1996) Social status and resistance to disease in house mice (Mus musculus): status-related modulation of hormonal responses in relation to immunity costs in different social and physical environments. Ethology 102, 6384.CrossRefGoogle Scholar
Barnard, C.J., Behnke, J.M., Gage, A.R., Brown, H. & Smithurst, P.R. (1997) Modulation of behaviour and testosterone concentration in immunodepressed male laboratory mice (Mus musculus). Physiology and Behaviour 61, 907917.CrossRefGoogle ScholarPubMed
Barnard, C.J., Behnke, J.M., Gage, A.R., Brown, H. & Smithurst, P.R. (1998) The role of parasite-induced immunodepression, rank and social environment in the modulation of behaviour and hormone concentration in male laboratory mice (Mus musculus). Proceedings of the Royal Society of London Series B 265, 693701.CrossRefGoogle ScholarPubMed
Barnard, C.J., Behnke, J.M., Bajer, A., Bray, D., Race, T., Frake, K., Osmond, J., Dinmore, J. & Sinski, E. (2002) Local variation in endoparasite intensities of bank voles (Clethrionomys glareolus) from ecologically similar sites: morphometric and endocrine correlates. Journal of Helminthology 76, 103112.CrossRefGoogle ScholarPubMed
Bronson, F.H. (1979) The reproductive ecology of the house mouse. Quarterly Review of Biology 54, 265298.CrossRefGoogle ScholarPubMed
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Chambers, L.K., Singleton, G.R. & Krebs, C.J. (2000) Movements and social organization of wild house mice (Mus domesticus) in the wheatlands of northwestern Victoria, Australia. Journal of Mammalogy 81, 5969.2.0.CO;2>CrossRefGoogle Scholar
Chapuis, J.-L., Le Roux, V., Asseline, J. & Kerleau, F. (2001) Eradication of rabbits (Oryctolagus cuniculus) by poisoning on three islands of the subantarctic Kerguelen archipelago. Wildlife Research 28, 323331.CrossRefGoogle Scholar
Drickamer, L.C., Feldhamer, G.A., Mikesic, D.G. & Holmes, C.M. (1999) Trap-response heterogeneity of house mice (Mus musculus) in outdoor enclosures. Journal of Mammalogy 80, 410420.CrossRefGoogle Scholar
Efford, D.G., Karl, B.L. & Moller, H. (1988) Population ecology of Mus musculus on Mana Island, New Zealand. Journal of Zoology 216, 539563.CrossRefGoogle Scholar
Folstad, I. & Karter, A.J. (1992) Parasites, bright males, and the immunocompetence handicap. American Naturalist 139, 603622.CrossRefGoogle Scholar
Framstad, E., Engen, S. & Stenseth, C. (1985) Regression analysis, residuals analysis and missing variable in regression models. Oikos 44, 319323.CrossRefGoogle Scholar
Genstat 5 Committee (1994) Genstat 5 Release 3 Reference Manual. New York, Oxford University Press, 796 pp.Google Scholar
Grice, R.L. & Prociv, P. (1993) In vitro embryonation of Syphacia obvelata eggs. International Journal for Parasitology 23, 257260.CrossRefGoogle ScholarPubMed
Grossman, C.J. (1985) Interaction between the gonadal steroids and the immune system. Science 227, 257261.CrossRefGoogle ScholarPubMed
Klein, S.L. (2000) Hormones and mating system affect sex and species differences in immune function among vertebrates. Behavioural Processes 51, 149166.CrossRefGoogle ScholarPubMed
Klein, S.L. & Nelson, R.J. (1998) Adaptative immune responses are linked to the mating system of arvicoline rodents. American Naturalist 151, 5967.CrossRefGoogle Scholar
Krebs, C.J. & Singleton, G.R. (1993) Indices of condition for small mammals. Australian Journal of Zoology 41, 317323.CrossRefGoogle Scholar
Lésel, R. & Derenne, P. (1975) Introducing animals to îles Kerguelen. Polar Record 17, 485494.CrossRefGoogle Scholar
Le Roux, V., Chapuis, J.-L., Frenot, Y. & Vernon, P. (2002) Diet of the house mouse (Mus musculus), Guillou Island, Kerguelen archipelago, Subantarctic. Polar Biology 25, 4957.CrossRefGoogle Scholar
Lidicker, W.Z. (1966) Ecological observations on a feral house mouse population declining to extinction. Ecological Monographs 36, 2750.CrossRefGoogle Scholar
Martinet, L. (1967) Cycle saisonnier de reproduction du campagnol des champs Microtus arvalis . Annales de Biologie animale, Biochimie, Biophysique 7, 245259.CrossRefGoogle Scholar
Matthewson, D.C., van Aarde, R.J. & Skinner, J.D. (1994) Population biology of house mice (Mus musculus L.) on sub-Antarctic Marion Island. South African Journal of Zoology 29, 99106.CrossRefGoogle Scholar
Pisanu, B. (1999) Diversité, variabilité morphologique et rôle des helminthes chez des mammifères introduits en milieu insulaire. 92 pp. Thèse de l'Université de Rennes I, France.Google Scholar
Pisanu, B., Chapuis, J.-L. & Durette-Desset, M.-C. (2001) Helminths from small mammals introduced on Kerguelen, Crozet, and Amsterdam Islands (southern Indian Ocean). Journal of Parasitology 87, 12051208.CrossRefGoogle ScholarPubMed
Pisanu, B., Chapuis, J.-L., Durette-Desset, M.-C. & Morand, S. (2002) Epizootiology of Syphacia obvelata from a domestic mouse population on sub-Antarctic Kerguelen Archipelago. Journal of Parasitology 88, 645649.CrossRefGoogle Scholar
Poulin, R. (1996) Sexual inequalities in helminth infections: a cost of being a male? American Naturalist 147, 287295.CrossRefGoogle Scholar
Pryor, S. & Bronson, F.H. (1981) Relative and combined effects of low temperature, poor diet and short daylength on the productivity of wild house mice. Biology and Reproduction 25, 734743.CrossRefGoogle ScholarPubMed
Pye, T. (1993) Reproductive biology of the feral house mouse (Mus musculus) on subantarctic Macquarie Island. Wildlife Research 20, 745758.CrossRefGoogle Scholar
Raynaud, A. (1950) Etat de développement de l'appareil génital des mulots (Apodemus sylvaticus L.) au cours des différentes saisons de l'année. Compte Rendus de la Société Biologique 144, 938940.Google Scholar
Raynaud, A. (1950) Variations saisonnières des organes génitaux des mulots (Apodemus sylvaticus L.) de sexe mâles. Données pondérales et histologiques. Comptes Rendus de la Société Biologique 144, 941945.Google Scholar
Scherrer, B. (1981) Biostatistiques. pp 850 [Morin, G., editor]. Québec, Canada.Google Scholar
Schulte-Hostedde, A.I., Millar, J.S. & Hickling, G.J. (2001) Evaluating body condition in small mammals. Canadian Journal of Zoology 79, 10211029.CrossRefGoogle Scholar
Spitz, F., Le Louarn, H., Poulet, A. & Dassonville, B. (1974) Standardisation des piégeages en ligne pour quelques espèces de rongeurs. Terre et Vie 28, 564578.Google Scholar
Viggers, K.L., Lindenmayer, D.B., Cunningham, R.B. & Donnely, C.F. (1998) Estimating body condition in the mountain brushtail possum. Trichosaurus caninus . Wildlife Research 25, 499509.CrossRefGoogle Scholar
Wilson, K. & Grenfell, B.T. (1997) Generalized linear modelling for parasitologists. Parasitology Today 13, 3338.CrossRefGoogle ScholarPubMed