Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T04:09:00.745Z Has data issue: false hasContentIssue false

Studies on the chemical nature of the cyst wall of Microphallus madrasensis

Published online by Cambridge University Press:  05 June 2009

P. Ramasamy
Affiliation:
Department of Zoology, Life Science Building, University of Madras, Madras-600 025, India
S. Lekha Panicker
Affiliation:
Department of Zoology, Life Science Building, University of Madras, Madras-600 025, India

Abstract

The cyst wall of Microphallus madrasensis resisted 6 N and 11·3 N hydrochloric acids (HCL) 36 N concentrated sulphuric acid (H2S04) and 0·35 M sodium hypochlorite. It was partially dissolved in 0·6 M sodium azide and completely dissolved in 16 N nitric acid (HNO3). An HCl hydrolysate of the cyst wall contained 10 amino acids viz. alanine, leucine, aspartic acid, glutamic acid, lysine, histidine. phenylalanine. tyrosine. cystine and proline. Polyacrylamide gel electrophoresis revealed the presence of a fast moving fraction which stained with periodic acid-Schiffs (PAS) reagent and toluidine blue was noticed in tris-glycine buffer soluble and methanol water soluble substances present in the cyst wall. Triton X-100 soluble substances present in the cyst wall revealed the presence of two slow-moving fractions stained only with PAS, and also a fast-moving fraction stained only with toluidine blue. Sodium dodecyl sulphate (SDS) soluble substances in the cyst wall revealed the presence of two fast-moving fractions which stained with PAS and toluidine blue. The slow-moving fractions are protein-bound carbohydrates. The fast-moving fractions obtained after fractionation with SDS are acid mucopolysaccharides or nucleoproteins whereas the single fraction (Triton X-100 soluble substances) which stained with toluidine blue appears to be a carbohydrate-free protein. The cyst wall of M. madrasensis also consisted of phospholipids and neutral lipids.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderson, G. D. (1975) Ultrastructure and histochemistry of the metacercarial cyst of Spelotrema nicolli, (Microphallidae: Trematoda). international Journal for Parasitology, 5, 656665.CrossRefGoogle Scholar
Anantaraman, S. & Subramoniam, T. (1976) On a microphallid metacercaria occurring in the ovaries of the sand crabs Emerita asiatica and Albunea symnista on the Madras Coast. Proceedings of the Indian Academy of Science, 84, 192199.CrossRefGoogle Scholar
Asanji, M. F. & Williams, M. O. (1973) The structure and histochemistry of some trematode metacercarial cysts. Journal of Helminthologhy, 47, 353368.CrossRefGoogle ScholarPubMed
Brown, C. H. (1950) A review of the methods available for the determination of the types of forces stabilizing structural proteins in animals. Quarterly Journal of Microscopical Science, 93, 487503.Google Scholar
Dawes, B. (1946) The Trematoda. Cambridge University Press: Cambridge.Google Scholar
Dixon, K. E. (1965) The structure and histochemistry of the cyst wall of the metacercaria of Fasciola hepatica. Parasitology, 55, 215226.CrossRefGoogle ScholarPubMed
Dixon, K. E. (1966) The physiology of excystment of the metacercariae of Fasciola hepatica. Parasitology, 56, 431456.CrossRefGoogle ScholarPubMed
Dixon, K. E. (1975) The structure and composition of the cyst wall of the metacercaria of Cloacitrema narrabeenensis (Howell & Bearup. 1967) (Digenea: Philophthalmidae). International Journal for Parasitology, 5, 113118.CrossRefGoogle ScholarPubMed
Fujino, T., Hamajima, F., Ishii, Y. & Mori, R. (1977) Development of Microphalloides Japonicus (Osborn, 1919) metacercariae in vitro (Trematoda: Microphallidae). Journal of Helminthology, 51, 125129.CrossRefGoogle ScholarPubMed
Halton, D. W. & Johnston, B. R. (1982) Functional morphology of the metacercarial cyst of Bucephaloides gracilescens (Trematoda: Bucephalidae). Parasitology, 85, 4552.CrossRefGoogle Scholar
Mahiler, H. R. & Cordes, E. H. (1971) Biological Chemistry. Harper & Row. New York.Google Scholar
Pearse, A. G. E. (1968) Histochemistry: Theoretical and Applied, Vol. I. Y. and A. Churchill, London.Google Scholar
Ramalingam, K. & Ravindranath, M. H. (1970) Histochemical significance of green metachromasia to toluidine blue. Histochemie, 24, 322327.CrossRefGoogle ScholarPubMed
Ramasamy, P. (1984) Stabilization of the egg-shell of a monogenean Dionchus remorae. Experientia, 40, 839840.CrossRefGoogle Scholar
Smith, I. (1968) Chromatographic and Electrophoretic Techniques Vol. II. Acrylamide Gel Disc Electrophoresis, pp. 365496. William Heinemann Medical Book Ltd., London.Google Scholar
Smith, I. & Seakins, J. W. T. (1976) Chromatographic and Electrophoresis techniques. Vol. I. William Heinemann Medical Books Ltd., London.Google Scholar
Smyth, J. D. & Halton, D. W. (1983) The Physiology of Trematodes. Cambridge University Press. Cambridge.Google Scholar
Stanier, T. E., Woodhouse, M. A. & Griffin, R. L. (1968) Light and electron microscopic observations on the metacercaria of Spelotrema sp. (Trematoda: Microphallidae) encysted in Carcinus maenas. Journal of Invertebrate Pathology, 10, 269282.CrossRefGoogle ScholarPubMed
Uglem, G. L. & Larsen, O. R. (1987) Facilitated diffusion and active transport systems for glucose in metacercariae of Clinostomum marginatum (Digenea). international Journal for Parasitology, 17, 847850.CrossRefGoogle Scholar