Hostname: page-component-6bf8c574d5-9nwgx Total loading time: 0 Render date: 2025-02-22T22:17:04.199Z Has data issue: false hasContentIssue false

Steinernema keralense n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from India

Published online by Cambridge University Press:  17 February 2025

K.M. Anes
Affiliation:
ICAR-Central Plantation Crops Research Institute, Regional Station, Kayamkulam–690533 Kerala, India
J. Patil*
Affiliation:
ICAR–National Bureau of Agricultural Insect Resources, Bengaluru–560024, Karnataka, India
M. Babu
Affiliation:
ICAR-Central Plantation Crops Research Institute, Regional Station, Kayamkulam–690533 Kerala, India
N. Aarthi
Affiliation:
ICAR–National Bureau of Agricultural Insect Resources, Bengaluru–560024, Karnataka, India
B.S. Gotyal
Affiliation:
ICAR–National Bureau of Agricultural Insect Resources, Bengaluru–560024, Karnataka, India
A. Josephrajkumar
Affiliation:
ICAR-Central Plantation Crops Research Institute, Regional Station, Kayamkulam–690533 Kerala, India
P.H. Mhatre
Affiliation:
ICAR–Central Potato Research Institute, Regional Station, Udhagamandalam, Nilgiris–643004, Tamil Nadu, India
J.V. Sajan
Affiliation:
ICAR-Central Plantation Crops Research Institute, Regional Station, Kayamkulam–690533 Kerala, India
M.T. Gowda
Affiliation:
ICAR–Indian Institute of Vegetable Research, Varanasi–221305, Uttar Pradesh, India
V. Půža
Affiliation:
Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic Faculty of Agriculture and Technology, University of South Bohemia, Studentská 1668, České Budějovice 37005, Czech Republic
*
Corresponding author: J. Patil; Email: [email protected]

Abstract

In this study, morphological and molecular features were used to identify a new Steinernema sp. from Kerala, India. Morphological and molecular features provide evidence for placing the new species into the longicaudum clade. The new species is characterized by the following morphological features: infective juveniles with a body length of 1067 μm (914–1268 μm); a distance from the anterior end to excretory pore of 82 μm (73–92 μm); a distance from anterior end to nerve ring of 105 μm (91–118 μm). The distinguishing feature of the infective juveniles of S. keralense n. sp. is the presence of seven ridges in the mid-body region, while all other species classified within the logicaudum clade to date are characterized by eight ridges. The first-generation males are characterised by 25 genital papillae, very short spicules, with a length of 68 μm (60–72 μm), and the SW% ratio is 136 (114–169). The new species is further characterized by sequences of the internal transcribed spacer and partial 28S regions of the ribosomal DNA. Phylogenetic analyses show that S. keralense n. sp. is closely related to species within the longicaudum clade.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Joint first author.

References

Akhurst, RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal of General Microbiology 121, 303309.Google Scholar
Anes, KM, Babu, M, Sivadasan, J and Josephrajkumar, A (2018) New distributional record of Steinernema hermaphroditum (Nematoda: Steinernematidae) from Kerala, India. Indian Journal of Nematology 48(2), 169177.Google Scholar
Anes, KM, Babu, M, Sivadasan, J and Josephrajkumar, A (2020) Discovery of a new Steinernema sp. (Rhabditida: Steinernematidae) with higher shelf life and better efficacy against red palm weevil under laboratory conditions. Journal of Plantation Crops 48(3), 184191.CrossRefGoogle Scholar
Baniya, A, Subkrasae, C, Ardpairin, J, Anesko, K, Vitta, A and Dillman, AR (2024) Steinernema adamsi n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Thailand. The Journal of Parasitology 110, 2239.CrossRefGoogle Scholar
Bhat, AH, Machado, AR, Abolafia, J, Askary, TH, Půža, V, Ruiz-Cuenca, AN, Ameen, F, Rana, A, Sayed, S and Al-Shuraym, LA (2023) Multigene sequence-based and phenotypic characterization reveals the occurrence of a novel entomopathogenic nematode species, Steinernema anantnagense n. sp. Journal of Nematology 55(1), 20230029. doi: https://doi.org/10.2478/jofnem-2023-0029.CrossRefGoogle ScholarPubMed
De Maeseneer, J and D’ Herde, J (1963) Méthodes utilisées pour 1’étude des anguillules libres du sol. Revue de l’ Agriculture Bruxelles 16, 441447.Google Scholar
Dreyer, J, Malan, AP and Dicks, LM (2018) First report of a symbiotic relationship between Xenorhabdus griffiniae and an unknown Steinernema from South Africa. Archives of Microbiology 200, 349353.CrossRefGoogle Scholar
Edgington, S, Buddie, AG, Tymo, L, France, A, Merino, L and Hunt, DJ (2009) Steinernema unicornum sp. n. (Panagrolaimomorpha: Steinernematidae), a new entomopathogenic nematode from Chile. Journal of Nematode Morphology and Systematics 12,113131.Google Scholar
Folmer, O, Black, M, Hoeh, W, Lutz, R and Vrijenhoek, R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Griffin, CT, Boemare, NE and Lewis, EE (2005) Biology and behaviour. In Grewal, PS, Ehlers, RU and Shapiro-Ilan, D (eds), Nematodes as Biocontrol Agents. Wallingford: CABI Publishing, 4764.CrossRefGoogle Scholar
Heuer, H, Krsek, M, Baker, P, Smalla, K and Wellington, E (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradientsApplied and Environmental Microbiology 63, 32333241.CrossRefGoogle ScholarPubMed
Hominick, WM (2002) Biogeography. In Gaugler, R (ed), Entomopathogenic Nematology. Wallingford: CABI Publishing, 115143.CrossRefGoogle Scholar
Hooper, DJ (1970) Handling, fixing, staining, and mounting nematodes. In Southey, JF (ed), Laboratory Methods for Work with Plant and Soil Nematodes, 5th edn. London: Her Majesty’s Stationery Office, 3954.Google Scholar
Kaya, HK and Stock, SP (1997) Techniques in insect nematology. In Lacey, I (ed), Manual of Techniques in Insect Pathology. San Diego: Academic Press, 313314.Google Scholar
Khatri-Chhetri, HB, Waeyenberge, L, Spiridonov, SE, Manandhar, HK and Moens, M (2011) Steinernema lamjungense n. sp. (Rhabditida: Steinernematidae), a new species of entomopathogenic nematode from Lamjung district, Nepal. Nematology 13, 589605.CrossRefGoogle Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7), 18701874. https://doi.org/10.1093/molbev/msw054.CrossRefGoogle ScholarPubMed
Lengyel, K, Lang, E, Fodor, A, Szállás, E, Schumann, P and Stackebrandt, E (2005) Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov. Systematic and Applied Microbiology 28, 115122.Google ScholarPubMed
Nei, M and Kumar, S (2000) Molecular Evolution and Phylogenetics. New York: Oxford University.CrossRefGoogle Scholar
Nguyen, KB (2007) Methodology, morphology and identification. In Nguyen, KB and Hunt, DJ (eds), Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Simbionts. Nematology Monographs & Perspectives, vol. 5. Leiden: Brill, 59119.CrossRefGoogle Scholar
Nguyen, KB and Smart, GC Jr (1995) Scanning electron microscope studies of Steinernema glaseri (Nematoda: Steinernematidae). Nematologica 41, 183190.CrossRefGoogle Scholar
Nguyen, KB and Smart, GC Jr (1997) Scanning electron microscope studies of spicules and gubernacula of Steinernema spp. (Nemata: Steinernematidae). Nematologica 43, 465480.CrossRefGoogle Scholar
Nthenga, I, Knoetze, R, Berry, S, Tiedt, LR and Malan, AP (2014) Steinernema sacchari n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. Nematology 16, 475494.CrossRefGoogle Scholar
Patil, J, Linga, V, Mhatre, PH, Gowda, MT, Rangasamy, V and Půža, V (2023) Steinernema indicum n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from India. Nematology 25(7), 815833. doi: https://doi.org/10.1163/15685411-bja10258.CrossRefGoogle Scholar
Poinar, GO Jr (1990) Taxonomy and biology of Steinernematidae and Heterorhabditidae pp 23-61. In Gaugler, R and Kaya, HK (eds), Entomopathogenic Nematodes in Biological Control. Boca Raton, FL: CRC Press.Google Scholar
Půža, V (2015) Control of insect pests by entomopathogenic nematodes. In Lugtenberg, B (ed), Principles of Plant-Microbe Interaction, Microbes for Sustainable Agriculture. Springer Cham Heidelberg: New York Dordrecht London, 175183.CrossRefGoogle Scholar
Půža, V and Machado, RAR (2024) Systematics and phylogeny of the entomopathogenic nematobacterial complexes Steinernema–Xenorhabdus and Heterorhabditis–Photorhabdus. Zoological Letters 10, 13.CrossRefGoogle ScholarPubMed
Půža, V, Nermut, J, Mráček, Z, Gengler, S and Haukeland, S (2017) Steinernema pwaniensis n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Tanzania. Journal of Helminthology 91, 2034.CrossRefGoogle Scholar
Qiu, L, Fang, Y, Zhou, Y, Pang, Y and Nguyen, KB (2004) Steinernema guangdongense sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from southern China with a note on S. serratum (nomen nudum). Zootaxa 704, 120.CrossRefGoogle Scholar
Qiu, L, Zhao, J, Wu, Z, Lv, Z and Pang, Y (2011) Steinernema pui sp. n. (Rhabditida, Steinernematidae), a new entomopathogenic nematode from Yunnan, China. Zootaxa 2767, 113.CrossRefGoogle Scholar
Rzhetsky, A and Nei, M (1992) A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution 9, 945967.Google Scholar
Saitou, N and Nei, M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406425. https://doi.org/10.1093/oxfordjournals.molbev.a040454.Google Scholar
Seinhorst, JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 6769.CrossRefGoogle Scholar
Shen, CP and Wang, GH (1992) Description of an entomopathogenic nematode, Steinernema longicaudum sp. nov. and its application. In Proceedings of the XIX international Congress of Entomology. Beijing: Chinese Science and Technology Press, 220231.Google Scholar
Soni, S, Patil, J, Linga, V, Mhatre, PH, Gowda, MT, Ganguli, J and Půža, V (2023) Steinernema shori n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from India. Journal of Helminthology 97, 114.CrossRefGoogle Scholar
Spiridonov, SE, Reid, AP, Podrucka, K, Subbotin, SA and Moens, M (2004) Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1-5.8 S-ITS2 region of rDNA and morphological features. Nematology 6, 547566.CrossRefGoogle Scholar
Spiridonov, SE and Subbotin, SA (2016) Phylogeography of Heterorhabditis and Steinernema. In Hunt, DJ and Nguyen, KB (eds), Advances in Entomopathogenic Nematode Taxonomy and Phylogeny . Nematology Monographs and Perspectives 12. Leiden, The Netherlands: Brill, 413427.CrossRefGoogle Scholar
Stock, SP (2019) Partners in crime: Symbiont-assisted resource acquisition in Steinernema entomopathogenic nematodes. Current Opinion in Insect Science 32, 2227.CrossRefGoogle ScholarPubMed
Stock, SP, Griffin, CT and Chaerani, R (2004) Morphological and molecular characterisation of Steinernema hermaphroditum n. sp. (Nematoda: Steinernematidae), an entomopathogenic nematode from Indonesia, and its phylogenetic relationships with other members of the genus. Nematology 6, 401412.CrossRefGoogle Scholar
Tailliez, P, Laroui, C, Ginibre, N, Paule, A, Pagès, S and Boemare, N (2010) Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. International Journal of Systematic and Evolutionary Microbiology 60, 19211937.CrossRefGoogle Scholar
Tailliez, P, Pages, S, Ginibre, N and Boemare, N (2006) New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. International Journal of Systematic and Evolutionary Microbiology 56, 28052818.CrossRefGoogle ScholarPubMed
Tseng, CT, Hou, RF and Tang, LC (2018) Steinernema taiwanensis n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Taiwan. Zootaxa 4434, 466480.CrossRefGoogle Scholar
Vrain, TC, Wakarchuk, DA, Levesque, AC and Hamilton, RI (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15, 563573.Google Scholar
White, GF (1927) A method for obtaining infective juvenile nematode larvae from cultures. Science 66, 302303.CrossRefGoogle Scholar