Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T01:07:51.767Z Has data issue: false hasContentIssue false

Sequence variation in three mitochondrial DNA genes among isolates of Ascaridia galli originating from Guangdong, Hunan and Yunnan provinces, China

Published online by Cambridge University Press:  10 October 2012

J.Y. Li
Affiliation:
State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province730046, PR China College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province510642, PR China
G.H. Liu
Affiliation:
State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province730046, PR China College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province410128, PR China
Y. Wang
Affiliation:
State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province730046, PR China College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province510642, PR China
H.Q. Song
Affiliation:
State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province730046, PR China
R.Q. Lin
Affiliation:
College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province510642, PR China
F.C. Zou
Affiliation:
College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province650201, PR China
W. Liu
Affiliation:
College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province410128, PR China
M.J. Xu
Affiliation:
State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province730046, PR China
X.Q. Zhu*
Affiliation:
State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province730046, PR China College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province410128, PR China College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province650201, PR China
*
* Fax: +86 (931) 8340977, E-mail: [email protected]

Abstract

The present study examined sequence variation in three mitochondrial DNA (mtDNA) genes, namely cytochrome c oxidase subunit 3 (cox3) and NADH dehydrogenase subunits 1 and 4 (nad1 and nad4), among Ascaridia galli isolates from different geographical localities in China. A portion of cox3 (pcox3), nad1 (pnad1) and nad4 (pnad4) genes were amplified by polymerase chain reaction (PCR) separately from adult A. galli individuals and the amplicons were subjected to sequencing from both directions. The length of the sequences of pcox3, pnad1 and pnad4 were 408 bp, 471 bp and 333 bp, respectively. The intraspecific sequence variations within A. galli were 0–1.7% for pcox3, 0–2.8% for pnad1 and 0–3.4% for pnad4. The A+T contents of the sequences were 67.16–67.65% (pcox3), 67.09–67.94% (pnad1) and 69.91–71.77% (pnad4). The interspecific sequence differences among members of the Ascaridida were significantly higher, being 13.2–30.9%, 12.8–29.0% and 15.1–34.1% for pcox3, pnad1 and pnad4, respectively. Phylogenetic analyses using combined sequences of pcox3, pnad1 and pnad4, with three different computational algorithms (Bayesian analysis, maximum likelihood and maximum parsimony), all revealed distinct groups with high statistical support. These findings demonstrated the existence of intraspecific variation in mitochondrial DNA (mtDNA) sequences among A. galli isolates from different geographical regions in China, and have implications for studying molecular epidemiology and population genetics of A. galli.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelqader, A., Gauly, M., Wollny, C.B. & Abo-Shehada, M.N. (2008) Prevalence and burden of gastrointestinal helminthes among local chickens, in northern Jordan. Preventive Veterinary Medicine 85, 1722.CrossRefGoogle ScholarPubMed
Ai, L., Chen, M.X., Alasaad, S., Elsheikha, H.M., Li, J., Li, H.L., Lin, R.Q., Zou, F.C., Zhu, X.Q. & Chen, J.X. (2011) Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches. Parasites and Vectors 4, 101.CrossRefGoogle ScholarPubMed
Blouin, M.S. (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. International Journal of Parasitology 32, 527531.CrossRefGoogle ScholarPubMed
Bowles, J. & McManus, D.P. (1993) NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. International Journal for Parasitology 23, 969972.CrossRefGoogle ScholarPubMed
Cerutti, M.C., Citterio, C.V., Bazzocchi, C., Epis, S., D'Amelio, S., Ferrari, N. & Lanfranchi, P. (2010) Genetic variability of Haemonchus contortus (Nematoda: Trichostrongyloidea) in alpine ruminant host species. Journal of Helminthology 84, 276283.CrossRefGoogle ScholarPubMed
Chilton, N.B., Gasser, R.B. & Beveridge, I. (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). International Journal for Parasitology 25, 647651.CrossRefGoogle Scholar
Dahl, C., Permin, A., Christensen, J.P., Bisgaard, M., Muhairwa, A.P., Petersen, K.M., Poulsen, J.S. & Jensen, A.L. (2002) The effect of concurrent infections with Pasteurella multocida and Ascaridia galli on free range chickens. Veterinary Microbiology 86, 313324.CrossRefGoogle ScholarPubMed
Dai, R.S., Liu, G.H., Song, H.Q., Lin, R.Q., Yuan, Z.G., Li, M.W., Huang, S.Y., Liu, W. & Zhu, X.Q. (2012) Sequence variability in two mitochondrial DNA regions and internal transcribed spacer among three cestodes infecting animals and humans from China. Journal of Helminthology 86, 245251.CrossRefGoogle ScholarPubMed
Eigaard, N.M., Schou, T.W., Permin, A., Christensen, J.P., Ekstrøm, C.T., Ambrosini, F., Cianci, D. & Bisgaard, M. (2006) Infection and excretion of Salmonella enteritidis in two different chicken lines with concurrent Ascaridia galli infection. Avian Pathology 35, 487493.CrossRefGoogle ScholarPubMed
Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307321.CrossRefGoogle ScholarPubMed
Höglund, J. & Jansson, D.S. (2011) Infection dynamics of Ascaridia galli in non-caged laying hens. Veterinary Parasitology 180, 267273.CrossRefGoogle ScholarPubMed
Li, M.W., Lin, R.Q., Song, H.Q., Sani, R.A., Wu, X.Y. & Zhu, X.Q. (2008) Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 29, 29122917.CrossRefGoogle ScholarPubMed
Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.CrossRefGoogle ScholarPubMed
Liu, G.H., Li, B., Li, J.Y., Song, H.Q., Lin, R.Q., Cai, X.Q., Zou, F.C., Yan, H.K., Yuan, Z.G., Zhou, D.H. & Zhu, X.Q. (2012) Genetic variation among Clonorchis sinensis isolates from different geographic regions in China revealed by sequence analyses of four mitochondrial genes. Journal of Helminthology (Epub ahead of print).CrossRefGoogle Scholar
Liu, W., Liu, G.H., Li, F., He, D.S., Wang, T., Sheng, X.F., Zeng, D.L., Yang, F.F. & Liu, Y. (2012) Sequence variability in three mitochondrial DNA regions of Spirometra erinaceieuropaei spargana of human and animal health significance. Journal of Helminthology 86, 271275.CrossRefGoogle ScholarPubMed
Martín-Pacho, J.R., Montoya, M.N., Arangüena, T., Toro, C., Morchón, R., Marcos-Atxutegi, C. & Simón, F. (2005) A coprological and serological survey for the prevalence of Ascaridia spp. in laying hens. Journal of Veterinary Medicine Series B – Infectious Diseases and Veterinary Public Health 52, 238242.CrossRefGoogle ScholarPubMed
McManus, D.P. & Bowles, J. (1996) Molecular genetic approaches to parasite identification: their value in diagnostic parasitology and systematics. International Journal of Parasitology 26, 687704.CrossRefGoogle ScholarPubMed
Page, R.D. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358.Google ScholarPubMed
Permin, A. & Ranvig, H. (2001) Genetic resistance to Ascaridia galli infections in chickens. Veterinary Parasitology 102, 101111.CrossRefGoogle ScholarPubMed
Posada, D. (2008) JModelTest phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Ramadan, H.H. & Abou Znada, N.Y. (1991) Some pathological and biochemical studies on experimental ascaridiasis in chickens. Die Nahrung 35, 7184.CrossRefGoogle ScholarPubMed
Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Swofford, D.L. (2002) PAUP*: Phylogenetic Analysis Using Parsimony (and other methods). Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882.CrossRefGoogle Scholar
Zhao, G.H., Mo, X.H., Zou, F.C., Weng, Y.B., Lin, R.Q., Xia, C.M. & Zhu, X.Q. (2009) Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes. Veterinary Parasitology 162, 6774.CrossRefGoogle Scholar