Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T07:29:01.546Z Has data issue: false hasContentIssue false

The role of macrophages on the expression of sex difference in the susceptibility to Brugia pahangi infection in C57BL/6 mice

Published online by Cambridge University Press:  05 June 2009

Hirokuni Nakanishi
Affiliation:
Department of Medical Zoology, Nagasaki University School of Medicine, Sakamoto-machi, Nagasaki 852, Japan;
Yoichiro Horii*
Affiliation:
Department of Medical Zoology, Nagasaki University School of Medicine, Sakamoto-machi, Nagasaki 852, Japan;
Koichiro Fujita
Affiliation:
Department of Medical Zoology, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113, Japan
*
* Author for coresspondence.

Abstract

The role of macrophages or eosinophils on the expression of sex difference in the susceptibility to a primary Brugia pahangi infection in C57BL/6 mice was investigated by using a macrophage blockade technique (carbon treatment) or a histamine type 1 (H1) receptor antagonist (promethazine). Carbon treatment remarkably inhibited macrophage exudation, reduced the resistance of female mice, and completely abolished sex difference in the susceptibility to B. pahangi infection. Although promethazine treatment inhibited eosinophil exudation, it caused only a little increase (not significant) in the recovery rate of worms. These results suggest that macrophages have more important role(s) than do eosinophils on the expression of sex difference in the susceptibility to a primary B. pahangi infection in C57BL/6 mice.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angel, J. A., Roberts, J. A., Woodie smith, T. Jr. & Di Luzio, N. R. (1982) Immunology of pyelonephritis. III. Effect of colloidal carbon. Journal of Urology, 128, 624628.CrossRefGoogle ScholarPubMed
Butterworth, A. E. (1977) The eosinophil and its role in immunity to helminth infection. Current Topics in Microbiology and Immunology, 77, 127168.CrossRefGoogle ScholarPubMed
Capron, A., Dessaint, J. P., Haque, A., Auriault, C. & Joseph, M. (1983) Macrophages as effector cells in helminth infections. Transactions of the Royal Society of Tropical Medicine and Hygiene, 77, 631635.CrossRefGoogle ScholarPubMed
Chandrashekar, R., Rao, U. R., Parab, P. B. & Subrahmanyam, D. (1986) Brugia malayi: Rat cell interactions with infective larvae mediated by complement. Experimental Parasitology, 62, 362369.CrossRefGoogle ScholarPubMed
Eaves, A. C. & Bruce, W. R. (1974) In vitro production of colony-stimulating activity. I. Exposure of mouse peritoneal cells to endotoxin. Cell Tissue Kinetics, 7, 1930.Google ScholarPubMed
Ewan, V. & Yoshida, T. (1979) Lymphokines and cytokines. In: Chemical Messengers of the Inflammatory Process. Vol. I. Handbook of Inflammation (editor Houch, J. C): North-Holland Biomedical Press: Amsterdam, pp. 197227.Google Scholar
Gery, I., Gershon, R. K. & Waksman, B. H. (1972) Potentiation of the T-lymphocyte response to mitogens. I. The responding cell. Journal of Experimental Medicine, 136, 128142.CrossRefGoogle ScholarPubMed
Greene, B. M., Taylor, H. R. & Aikawa, M. (1981) Cellular killing of microfilariae of Onchocerca volvulus: eosinophil and neutrophil-mediated immune serum-dependent destruction. Journal of Immunology, 127, 16111618.CrossRefGoogle ScholarPubMed
Howells, R. E., Devaney, E., Smith, G. & Hedges, T. (1983) The susceptibility of BALB/c and other inbred mouse strains to Brugia pahangi. Acta Tropica, 40, 341350.Google ScholarPubMed
Kazura, J. W., Fanning, M. M., Blumer, J. L. & Mahmoud, A. A. F. (1981) Role of cell-generated hydrogen peroxide in granulocyte-mediated killing of schistosomula of Schistosoma mansoni in vitro. Journal of Clinical Investigation, 67, 93102.CrossRefGoogle ScholarPubMed
Mackenzie, C. D. (1980) Eosinophil leukocytes in filarial infections. Transactions of the Royal Society of Tropical Medicine and Hygiene, 74(Suppl.), 5158.CrossRefGoogle Scholar
Mackenzie, C. D., Oxenham, S. L., Gatrill, A., Andrew, S., Grennan, D. & Denham, D. A. (1985) Mononuclear and multinuclear macrophages in filarial infections. Immunology Letters, 11, 239246.CrossRefGoogle ScholarPubMed
Nakanishi, H. (1987) Difference in the susceptibility to Brugia pahangi infection between male and female BALB/c mice: Differences of effector cell responses between sex. Tropical Medicine, 29, 153163.Google Scholar
Nakanishi, H., Horii, Y., Terashima, K. & Fujita, K. (1989a) Effect of macrophage blockade on the resistance to a primary Brugia pahangi infection of female BALB/c mice. Tropical Medicine and Parasitology 40, 7576.Google ScholarPubMed
Nakanishi, H., Horii, Y., Terashima, K. & Fujita, K. (1989b) Effect of testosterone on the susceptibility of C57BL/6 mice to infection with Brugia pahangi with reference to inflammatory cell response. Journal of Parasitology 75, 455460.CrossRefGoogle ScholarPubMed
Nathan, C. (1983) Mechanisms of macrophage antimicrobial activity. Transactions of the Royal Society of Tropical Medicine and Hygiene, 77, 620630.CrossRefGoogle ScholarPubMed
Oxenham, S. L., Mackenzie, C. D. & Denham, D. A. (1984) Increased activity of macrophages from mice infected with Brugia pahangi: in vitro adherence to microfilariae. Parasite Immunology, 6, 141156.CrossRefGoogle ScholarPubMed
Reed, S. G., Nathan, C. F., Pihl, D. L., Rodricks, P., Shanebeck, K., Conlon, P. J. & Grabstein, K. H. (1987) Recombinant granulocyte/macrophage colony-stimulating factor activates macrophages to inhibit Trypanosoma cruzi and release hydrogen peroxide: Comparison with interferon. Journal of Experimental Medicine, 166, 17341746.CrossRefGoogle ScholarPubMed
Rocklin, R. E., Bendtzen, K. & Greineder, D. (1980) Mediators of immunity: Lymphokines and monokines. Advances in Immunology, 29, 55136.CrossRefGoogle ScholarPubMed
Rudin, W., Tanner, M., Bauer, P. & Weiss, N. (1980) Studies on Dipetalonema viteae (Filarioidea). 5. Ultrastructural aspects of the antibody-dependent cell-mediated destruction of microfilariae. Tropenmedizin und Parasitologie, 31, 194200.Google ScholarPubMed
Sabet, T., Newlin, C. & Friedman, H. (1968) The effect of RES blockade on cellular antibody formation to sheep erythrocytes. Proceedings of the Society for Experimental Biology and Medicine, 128, 274278.CrossRefGoogle ScholarPubMed
Sabet, T., Newlin, C. & Friedman, H. (1969) Effects of RES blockade on antibody-formation. I. Suppressed cellular and humoral haemolysin responses in mice injected with carbon particles. Immunology, 16, 433446.Google ScholarPubMed
Wing, E. J., Ampel, N. M., Waheed, A. & Shadduck, R. K. (1985) Macrophage colony-stimulating factor (M-CSF) enhances the capacity of murine macrophages to secrete oxygen reduction products. Journal of Immunology, 135, 20522056.CrossRefGoogle ScholarPubMed