Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T14:19:51.362Z Has data issue: false hasContentIssue false

A report on the complete mitochondrial genome of the trematode Azygia robusta Odhner, 1911, its new definitive host from the Russian Far East, and unexpected phylogeny of Azygiidae within Digenea, as inferred from mitogenome sequences

Published online by Cambridge University Press:  01 September 2023

D. M. Atopkin*
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia Department of Cell Biology and Genetics, Far Eastern Federal University, Vladivostok, Russia
A. A. Semenchenko
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
D. A. Solodovnik
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
Y. I. Ivashko
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
*
Corresponding author: D. M. Atopkin; Email: [email protected]

Abstract

New data on the complete mitochondrial genome of Azygia robusta (Azygiidae) were obtained by the next-generation sequencing (NGS) approach. The mitochondrial DNA (mtDNA) of A. robusta had a length of 13 857 bp and included 12 protein-coding genes, two ribosomal genes, 22 transfer RNA genes, and two non-coding regions. The nucleotide sequences of the complete mitochondrial genomes of two A. robusta specimens differed from each other by 0.12 ± 0.03%. Six of 12 protein-coding genes demonstrated intraspecific variation. The difference between the nucleotide sequences of the complete mitochondrial genomes of A. robusta and Azygia hwangtsiyui was 26.95 ± 0.35%; the interspecific variation of protein-coding genes between A. robusta and A. hwangtsiyui ranged from 20.5 ± 0.9% (cox1) to 30.7 ± 1.2% (nad5). The observed gene arrangement in the mtDNA sequence of A. robusta was identical to that of A. hwangtsiyui. Codon usage and amino acid frequencies were highly similar between A. robusta and A. hwangtsiyui. The results of phylogenetic analyses based on mtDNA protein-coding regions showed that A. robusta is closely related to A. hwangtsiyui (belonging to the same suborder, Azygiida) that formed a distinct early-diverging branch relative to all other Digenea. A preliminary morphological analysis of paratypes of the two azygiid specimens studied showed visible morphological differences between them. The specimen extracted from Sakhalin taimen (Parahucho perryi) was most similar to A. robusta. Thus, we here provide the first record of a new definitive host, P. perryi, for A. robusta and also molecular characteristics of the trematode specimens.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anisimova, M, Gascuel, O (2006). Approximate likelihood-ratio test for branches: a fast, accurate and powerful alternative. Systematic Biology 55, 4, 539552. https://doi.org/10.1080/10635150600755453CrossRefGoogle Scholar
Atopkin, DM, Semenchenko, AA, Solodovnik, DA, Ivashko, YI, Vinnikov, KA (2021). First next-generation sequencing data for Haploporidae (Digenea: Haploporata): characterization of complete mitochondrial genome and ribosomal operon for Parasaccocoelium mugili Zhukov, 1971. Parasitology Research 120, 6, 20372046. https://doi.org/10.1007/s00436-021-07159-yCrossRefGoogle ScholarPubMed
Babraham Bioinformatics (2010). FastQC: A quality control tool for high throughput sequence data. Available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. (accessed March 1, 2023)Google Scholar
Bauer, ON (1987). Key for Determination of the Parasites of Freshwater Fish in the Fauna of USSR. Vol. 3. Part 2. Leningrad: Science Press (In Russian).Google Scholar
Besprozvannykh, VV (2005). The life cycles of trematodes Azygia hwangtsiytii and A. robusta (Azygiidae) in conditions of Primorsky Region. Parazitologija 39, 4, 278284 (In Russian).Google Scholar
Biswal, DK, Chatterjee, A, Bhattacharya, A, Tandon, V (2014). The mitochondrial genome of Paragonimus westermani (Kerbert, 1878), the Indian isolate of the lung fluke representative of the family Paragonimidae (Trematoda). PeerJ 2, e484. https://doi.org/10.7717/peerj.484CrossRefGoogle ScholarPubMed
Briscoe, AG, Bray, RA, Brabec, J, Littlewood, DT (2016). The mitochondrial genome and ribosomal operon of Brachycladium goliath (Digenea: Brachycladiidae) recovered from a stranded minke whale. Parasitology International 65, 3, 271275. https://doi.org/10.1016/j.parint.2016.02.004CrossRefGoogle ScholarPubMed
Chang, Q-C, Liu, G-H, Gao, J-F, Zheng, X, Zhang, Y, Duan, H, Yue, D-M, Fu, X, Su, X, Gao, Y, Wang, C-R (2016). Sequencing and characterization of the complete mitochondrial genome from the pancreatic fluke Eurytrema pancreaticum (Trematoda, Dicroroeliidae). Gene 576, Pt 1, 160165. https://doi.org/10.1016/j.gene.2015.09.081CrossRefGoogle Scholar
Dereeper, A, Guignon, V, Blanc, G, Audic, S, Buffet, S, Chevenet, F, Dufayard, JF, Guindon, S, Lefort, V, Lescot, M, Claverie, JM, Gascuel, O (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Gblocks alignment on-line service. Available at http://phylogeny.lirmm.fr/phylo_cgi/one_task.cgi?task_type=gblocks (accessed July 1, 2008).Google Scholar
Donath, A, Jühling, F, Al-Arab, M, Bernhart, SH, Reinhardt, F, Stadler, PF, Middendorf, M, Bernt, M (2009) Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research, 47(20), 1054310552. doi: 10.1093/nar/gkz833. Available at http://mitos2.bioinf.uni-leipzig.de/index.pyGoogle Scholar
Dvoryadkin, VA (1977). Freshwater gastropods as intermediate and additional hosts for some trematode species in the south of Far East. Proceedings of Institute of Biology and Soil Science FESC AS USSR, 47, 5669.Google Scholar
Fu, Y-T, Jin, Y-C, Li, F, Liu, G-H (2019a). Characterization of the complete mitochondrial genome of the echinostome Echinostoma miyagawai and phylogenetic implications. Parasitology Research 118, 10, 30913097. https://doi.org/10.1007/s00436-019-06417-4CrossRefGoogle ScholarPubMed
Fu, Y-T, Jin, Y-C, Li, F, Liu, G-H (2019b). The complete mitochondrial genome of the caecal fluke of Poultry, Postharmostomum commutatum, as the first representative from the superfamily Brachylaimoidea. Frontiers in Genetics 10, 1037. https://doi.org/10.3389/fgene.2019.01037CrossRefGoogle ScholarPubMed
Fukushima, M, Shimazaki, H, Rand, PS, Kaeriyama, M (2011). Reconstructing Sakhalin taimen Parahucho perryi historical distribution and identifying causes for local extinctions. Transactions of the American Fisheries Society 140, 1, 113. https://doi.org/10.1080/00028487.2011.544999CrossRefGoogle Scholar
Gibson, DI (2002). Superfamily Azygioidea Lühe, 1909. In Gibson, DI, Jones, A, Bray, RA (eds), Keys to the Trematoda, vol. 1. pp. 1924. Wallingford: CAB International.CrossRefGoogle Scholar
Guindon, S, Gascuel, O (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 5, 696704. https://doi.org/10.1080/10635150390235520CrossRefGoogle ScholarPubMed
Guo, X-R, Gao, Y, Qiu, Y-Y, Jin, Z-H, Gao, ZY, Zhang, XG, An, Q, Chang, QC, Gao, JF, Wang, CR (2022). The complete mitochondrial genome of Prosthogonimus cuneatus and Prosthogonimus pellucidus (Trematoda: Prosthogonomidae), their features and phylogenetic relationships in the superfamily Microphalloidea. Acta Tropica, 232, 106469. doi: 10.1016/j.actatropica.2022.106469.Google Scholar
Huelsenbeck, JP, Ronquist, F, Nielsen, R, Bollback, JP (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 5550, 23102314. https://doi.org/10.1126/science.1065889Google ScholarPubMed
Ivashko, Y, Semenchenko, A, Solodovnik, D, Atopkin, D (2022). Characterization of complete mitochondrial genome and ribosomal operon for Carassotrema koreanum Park, 1938 (Digenea: Haploporidae) by means of next-generation sequencing data. Journal of Helminthology 96, e54. https://doi.org/10.1017/S0022149X22000438CrossRefGoogle ScholarPubMed
Jones, BP, Norman, BF, Borrett, HE, Attwood, SW, Mondal, MMH, Walker, AJ, Webster, JP, Rajapakse, RPVJ, Lawton, SP (2020). Divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale. Scientific Reports 10, 1, 2480. https://doi.org/10.1038/s41598-020-57736-xGoogle ScholarPubMed
Kostadinova, A, Pérez-del-Olmo, A (2014). The systematic of the Trematoda. In Toledo, R, Fried, B (eds) Advances in Experimental Medicine and Biology. Digenetic Trematodes. pp. 2142. Luxemburg: Springer Science + Business Media.CrossRefGoogle Scholar
Kumar, S, Stecher, G, Li, M, Knyaz, C, Tamura, K (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35, 6, 15471549. https://doi.org/10.1093/molbev/msy096CrossRefGoogle ScholarPubMed
La Rue, GR (1957). The classification of digenetic Trematoda: a review and a new system. Experimental Parasitology 6, 3, 306344. https://doi.org/10.1016/0014-4894(57)90025-5CrossRefGoogle ScholarPubMed
Le, S, Gascuel, O (2008). An improved general amino-acid replacement matrix. Molecular Biology and Evolution 25, 7, 13071320. https://doi.org/10.1093/molbev/msn067CrossRefGoogle ScholarPubMed
Le, TH, Nguyen, KT, Nguyen, NTB, Doan, HTT, Agatsuma, T, Blair, D (2019). The complete mitochondrial genome of Paragonimus ohirai (Paragonimidae: Trematoda: Platyhelminthes) and its comparison with P. westermani congeners and other trematodes. PeerJ 7, e7031. https://doi.org/10.7717/peerj.7031CrossRefGoogle Scholar
Le, TH, NTB, Nguyen, Nguyen, KT, Doan, HTT, Dung, DT, Blair, D (2016). A complete mitochondrial genome from Echinochasmus japonicus supports the elevation of Echinochasminae Odhner, 1910 to family rank (Trematoda: Platyhelminthes). Infections, Genetic and Evolution 45, 369377. https://doi.org/10.1016/j.meegid.2016.09.024Google ScholarPubMed
Le, TH, Blair, D, Agatsuma, T, Humair, PF, Campbell, NJ, Iwagami, M, Littlewood, DT, Peacock, B, Johnston, DA, Bartley, J, Rollinson, D, Herniou, EA, Zarlenga, DS, McManus, DP (2000) Phylogenies inferred from mitochondrial gene orders - a cautionary tale from the parasitic flatworms. Molecular Biology and Evolution, 17(7), 11231125. doi: 10.1093/oxfordjournals.molbev.a026393.CrossRefGoogle Scholar
Lee, D, Choe, S, Park, H, Jeon, HK, Chai, JY, Sohn, WM, Yong, TS, Min, DY, Rim, HJ, Eom, KS (2013). Complete mitochondrial genome of Haplorchis taichui and comparative analysis with other trematodes. Korean Journal of Parasitology 51, 6, 719726. https://doi.org/10.3347/kjp.2013.51.6.719CrossRefGoogle ScholarPubMed
Li, Y, Ma, XX, Lv, QB, Hu, Y, Qiu, HY, Chang, QC, Wang, CR (2019). Characterization of the complete mitochondrial genome sequence of Tracheophilus cymbius (Digenea), the first representative from the family Cyclocoeliidae. Journal of Helminthology 94, e101. https://doi.org/10.1017/S0022149X19000932Google Scholar
Littlewood, DTJ, Lockyer, AE, Webster, BL, Johnston, DA, Le, TH (2006). The complete mitochondrial genomes of Shistosoma haematobium and Shistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Molecular Phylogenetics and Evolution 39, 2, 452467. https://doi.org/10.1016/j.ympev.2005.12.012CrossRefGoogle Scholar
Littlewood, DTJ (2008). Platyhelminth systematic and the emergence of new characters. Parasite 15, 3, 333341. https://doi.org/10.1051/parasite/2008153333Google ScholarPubMed
Liu, G-H, Gasser, RB, Young, ND, Song, H-Q, Ai, L, Zhu, X-Q (2014b). Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica. Parasites and Vectors 7, 150. https://doi.org/10.1186/1756-3305-7-150CrossRefGoogle ScholarPubMed
Liu, G-H, Yan, H-B, Otranto, D, Wang, X-Y, Zhao, G-H, Jia, W-Z, Zhu, X-Q (2014a). Dicrocoelium chiensis and Dicrocoelium dendriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochonsrial and nuclear ribosomal DNA sequences. Molecular Phylogenetics and Evolution 79, 325331. https://doi.org/10.1016/j.ympev.2014.07.002Google Scholar
Liu, Z-X, Zhang, Y, Liu, Y-T, Chang, Q-C, Su, X, Fu, X, Yue, D-M, Gao, Y, Wang, C-R (2016). Complete mitochondrial genome of Echinostoma hortense (Digenea: Echinostomatidae). Korean Journal of Parasitology 54, 2, 173179. https://doi.org/10.3347/kjp.2016.54.2.173CrossRefGoogle ScholarPubMed
Locke, SA, Dam, AV, Caffara, M, Pinto, HA, Lopez-Hernandez, D, Blanar, CA (2018). Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. International Journal for Parasitology, 48(13), 10431059. doi: 10.1016/j.ijpara.2018.07.001.CrossRefGoogle ScholarPubMed
Ma, J, He, JJ, Zhou, CY, Sun, MM, Cevallos, W, Sugiyama, H, Zhu, XQ, Calvopiña, M (2019). Characterization of the mitochondrial genome sequences of the liver fluke Amphimerus sp. (Trematoda: Opisthorchiidae) from Ecuador and phylogenetic implications. Acta Tropica 195, 9096. https://doi.org/10.1016/j.actatropica.2019.04.025Google Scholar
Mamaev, YL, Oshmarin, PG (1971). Helminth larvae in freshwater molluscs of Primorsky Krai. In Mamaev, YL (ed), Parasites of animals and plants at the Far East. Vladivostok: Far Eastern Book Publisher House [in Russian].Google Scholar
Na, L, Gao, J-F, Liu, G-H, Fu, X, Su, X, Yue, D-M, Gao, Y, Zhang, Y, Wang, C-R (2016). The complete mitochondrial genome of Metorchis orientalis (Trematoda: Opisthorchiidae): comparison with other closely related species and phylogenetic implications. Infection, Genetics and Evolution 39, 4550. https://doi.org/10.1016/j.meegid.2016.01.010CrossRefGoogle ScholarPubMed
Nagasawa, K, Urawa, S, Awakura, T (1987). A checklist and bibliography of parasites of Salmonids of Japan. Scientific Reports of Hokkaido Hatchery 41, 175.Google Scholar
Nicolić, V, Bilbija, B, Nedic, Z, Simonovic, P, Djikanovic, V (2018). First record of Azygia robusta (Odhner, 1911) (Trematoda: Digenea: Azygiidae) in brown trout (Salmo trutta) in the Vrbas River. Croatian Journal of Fisheries 76, 2, 8588. https://doi.org/10.2478/cjf-2018-0011CrossRefGoogle Scholar
Nurk, S, Bankevich, A, Antipov, D, Gurevich, AA, Korobeynikov, A, Lapidus, A, Prjibelski, AD, Pyshkin, A, Sirotkin, A, Sirotkin, Y, Stepanauskas, R, Clingenpeel, SR, Woyke, T, JS, McLean, Lasken, R, Tesler, G, Alekseyev, MA, Pevzner, PA (2013). Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. Journal of Computational Biology 20, 10, 714737. https://doi.org/10.1089/cmb.2013.0084CrossRefGoogle ScholarPubMed
Oey, H, Zakrzewski, M, Gravermann, K, Young, ND, Korhonen, PK, Gobert, GN, Nawaratna, S, Hasan, S, Martínez, DM, You, H, Lavin, M, Jones, MK, Ragan, MA, Stoye, J, Oleaga, A, Emery, AM, Webster, BL, Rollinson, D, Gasser, RB, McManus, DP, Krause, L (2019). Whole-genome sequence of the bovine blood fluke Shistosoma bovis supports interspecific hybridization with S. haematobium. PLoS Pathogens 15, 1, e1007513. https://doi.org/10.1371/journal.ppat.1007513CrossRefGoogle Scholar
Olson, PD, Cribb, TH, Tkach, VV, Bray, RA, Littlewood, DT (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33, 7, 733755. https://doi.org/10.1016/s0020-7519(03)00049-3CrossRefGoogle ScholarPubMed
Park, J-K, Kim, K-H, Kang, S, Jeon, HK, Kim, J-H, Littlewood, DTJ, Eom, KS (2007). Characterization of the mitochondrial genome of Diphyllobothrium latum (Cestoda: Pseudophyllidea) – implications for the phylogeny of eucestodes. Parasitology 134, 5, 749759. https://doi.org/10.1017/S003118200600206XCrossRefGoogle ScholarPubMed
Pérez-Ponce de León, G, Hernández-Mena, DI (2019). Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life. Journal of Helminthology 93, 3, 260276. https://doi.org/10.1017/S0022149X19000191CrossRefGoogle ScholarPubMed
Popiolek, M, Kusznierz, J, Kotusz, J, Witkowski, A (2013). Parasites of Hucho hucho (L.), Hucho taimen (Pall.), and Parahucho perryi (Brevoort) (Salmonidae, Actinopterygii) – the state of knowledge. Archives of Polish Fisheries 21, 3, 233239. https://doi.org/10.2478/aopf-2013-0024CrossRefGoogle Scholar
Protasio, AV, Tsai, IJ, Babbage, A, Nichol, S, Hunt, M, Aslett, MA, De Silva, N, Velarde, GS, Anderson, TJC, Clark, RC, Davidson, C, Dillon, GP, Holroyd, NE, LoVerde, PT, Lloyd, C, McQuillan, J, Oliveira, G, Otto, TD, Parker-Manuel, SJ, Quali, MA, Wilson, RA, Zerlotini, A, Dunne, DW, Berriman, M (2012). A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Neglected Tropical Diseases 6, 1, e1455. https://doi.org/10.1371/journal.pntd.0001455CrossRefGoogle ScholarPubMed
Qian, L, Zhou, P, Li, W, Wang, H, Miao, T, Hu, L (2018). Characterization of the complete mitochondrial genome of the lung fluke, Paragonimus heterotremus. Mitochondrial DNA Part B Resources 3, 2, 560561. https://doi.org/10.1080/23802359.2018CrossRefGoogle ScholarPubMed
Ramilo, A, Abollo, E, Pascual, S (2023). Molecular characterization of Maccallumtrema xiphiados (Trematoda: Azygiida) and Molicola sp. (Cestoda: Trypanorhyncha) infecting commercial frozen slices of Atlantic swordfish. International Journal of Food Microbiology 389, 110103. https://doi.org/10.1016/j.ijfoodmicro.2023.110103CrossRefGoogle ScholarPubMed
Ran, R, Zhao, Q, Abuzeid, AMI, Huang, Y, Liu, Y, Sun, Y, He, L, Li, X, Liu, J, Li, G (2020). Mitochondrial genome sequence of Echinostoma revolutum from Red-Crowned Crane (Grus japonensis). The Korean Journal of Parasitology 58, 1, 7379. https://doi.org/10.3347/kjp.2020.58.1.73CrossRefGoogle ScholarPubMed
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA, Huelsenbeck, JP (2012). MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 3, 539542. https://doi.org/10.1093/sysbio/sys029CrossRefGoogle ScholarPubMed
Semyenova, S, Chrisanfova, G, Mozharovskaya, L, Guliaev, A, Ryskov, A (2017). The complete mitochondrial genome of the causative agent of the human cercarial dermatitis, the visceral bird shistosome species Trichobilharzia szidati (Platyhelminthes: Trematoda: Shistosomatidae). Mitochondrial DNA Part B Resources 2, 2, 469470. https://doi.org/10.1080/23802359.2017.1347833CrossRefGoogle Scholar
Shekhovtsov, SV, Katokhin, AV, Kolchanov, NA, Mordvinov, VA (2010). The complete mitochondrial genomes of the liver flukes Opisthorchis felineus and Clonorchis sinensis (Trematoda). Parasitology International 59, 1, 100103. https://doi.org/10.1016/j.parint.2009.10.012CrossRefGoogle ScholarPubMed
Skrjabin, KI, Guschanskaja, LK (1958). Suborder Azygiata La Rue, 1957. In Skrjabin, KI (ed) Trematodes of Animals and Man. Osnovy Trematodologii, vol. 14. pp. 667788. Moscow: USSR Academy of Science (In Russian).Google Scholar
Sokolov, SG, Zhukov, AV (2016). The diversity of parasites in the Chinese sleeper Perccottus glenii Dybowski 1877 (Actinopterygii: Perciformes) under the conditions of large-scale range expansion. Proceedings of Russian Academy of Science. Biological Series 4, 439448.Google Scholar
Suleman, S, Khan, MS, Heneberg, P, Zhou, CY, Muhammad, N, Zhu, XQ, Ma, J (2019). Characterization of the complete mitochondrial genome of Uvitellina sp., representative of the family Cyclocoeliidae and phylogenetic implications. Parasitology Research 118, 7, 22032211. https://doi.org/10.1007/s00436-019-06358-yCrossRefGoogle Scholar
Suleman, S, Ma, J, Khan, MS, Tkach, VV, Muhammad, N, Zhang, D, Zhu, XQ (2019). Characterization of the complete mitochondrial genome of Plagiorchis maculosus (Digenea, Plagiorchiidae), representative of a taxonomically complex digenean family. Parasitology International 71, 99105. https://doi.org/10.1016/j.parint.2019.04.001CrossRefGoogle ScholarPubMed
Suleman, S, Muhammad, N, Khan, MS, Tkach, VV, Ullah, H, Ehsan, M, Ma, J, Zhu, XQ (2021). Mitochondrial genomes of two eucotylids as the first representatives from the superfamily Microphalloidea (Trematoda) and phylogenetic implications. Parasites and Vectors 14, 41, 8. https://doi.org/10.1186/s13071-020-04547-8CrossRefGoogle ScholarPubMed
TIBCO Software Inc. (2017). Statistica (program product for data analysis), version 13. http://statistica.io (accessed March 27, 2018)Google Scholar
Vainutis, KS, Voronova, AN, Mironovsky, AN, Zhigileva, ON, Zhokhov, AN (2003). The Species Diversity Assessment of Azygia Looss, 1899 (Digenea: Azygiidae) from the Volga, Ob, and Artyomovka Rivers Basins (Russia), with Description of A. sibirica n. sp. Diversity, 15(1), 119. doi.org/10.3390/d15010119.Google Scholar
Wang, Y, Wang, C-R, Zhao, G-H, Gao, J-F, Li, M-W, Zhu, X-Q (2011). The complete mitochondrial genome of Orientobilharzia turkestanicum supports its affinity with African Schistosoma spp. Infection, Genetics and Evolution 11, 8, 19641970. https://doi.org/10.1016/j.meegid.2011.08.030CrossRefGoogle ScholarPubMed
Wang, T, Wang, Y, Xu, F, Li, X, Qu, R, Song, L, Tang, Y, Lin, P (2018). Characterization of the complete mitochondrial genome of the lung fluke, Paragonimus kellicotti. Mitochondrial DNA Part B Resources 3, 2, 715716. https://doi.org/10.1080/23802359.2018CrossRefGoogle ScholarPubMed
Webster, BL, Rudolfová, J, Horák, P, Littlewood, DTJ (2007). The complete mitochondrial genome of the bird schistosome Trichobilharzia regent (Platyhelminthes: Digenea), causative agent of cercarial dermatitis. Journal of Parasitology 93, 3, 553561. https://doi.org/10.1645/GE-1072R.1CrossRefGoogle Scholar
Wu, Y-A, Gao, J-W, Cheng, X-F, Xie, M, Yuan, X-P, Liu, D, Song, R (2020). Characterization and comparative analysis of the complete mitochondrial genome of Azygia hwangtsiyui Tsin, 1933 (Digenea), the first for a member of the family Azygiidae. ZooKeys 945, 116. https://doi.org/10.3897/zookeys.945.49681CrossRefGoogle ScholarPubMed
Xu, G, Zhu, P, Zhu, W, Ma, B, Li, X, Li, W (2021). Characterization of the complete mitochondrial genome of Notocotylus sp. (Trematoda, Notocotylidae) and its phylogenetic implications. Parasitology Research 120, 4, 12911301. https://doi.org/10.1007/s00436-021-07075-1CrossRefGoogle ScholarPubMed
Yan, H-B, Wang, X-Y, Lou, Z-Z, Li, L, Blair, D, Yin, H, Cai, J-Z, Dai, X-L, Lei, M-T, Zhu, X-Q, Cai, X-P, Jia, W-Z (2013). The mitochondrial genome of Paramphistomum cervi (Digenea), the first representative for the family Paramphistomatidae. PLoS One 8, 8, e71300. https://doi.org/10.1371/journal.pone.0071300CrossRefGoogle Scholar
Yang, X, Gasser, RB, Koehler, AV, Wang, L, Zhu, K, Chen, L, Feng, H, Hu, M, Fang, R (2015). Mitochondrial genome of Hypoderaeum conoideum – comparison with selected trematodes. Parasites and Vectors 8, 97. https://doi.org/10.1186/s13071-015-0720-xCrossRefGoogle ScholarPubMed
Yang, X, Wang, L, Chen, H, Feng, H, Shen, B, Hu, M, Fang, R (2016). The complete mitochondrial genome of Gastrothylax crumenifer (Gastrothylacidae, Trematoda) and comparative analyses with selected trematodes. Parasitology Research 115, 6, 24892497. https://doi.org/10.1007/s00436-016-5019-0CrossRefGoogle ScholarPubMed
Zolotukhin, SF, Semenchenko, AY (2008). Growth and distribution of Sakhalin taimen Parahucho perryi (Brevoort) in watersheds. Proceedings of Levanidov V.Ya. Biennial Memorial Meeting 4, 317338 [in Russian].Google Scholar