Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-03T19:24:48.194Z Has data issue: false hasContentIssue false

The pink shrimp Farfantepenaeus duorarum, its symbionts and helminths as bioindicators of chemical pollution in Campeche Sound, Mexico

Published online by Cambridge University Press:  12 April 2024

V.M. Vidal-Martínez*
Affiliation:
Laboratories of Parasitology and Marine Geochemistry, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310 Mérida, Yucatán, México
M.L. Aguirre-Macedo
Affiliation:
Laboratories of Parasitology and Marine Geochemistry, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310 Mérida, Yucatán, México
R. Del Rio-Rodríguez
Affiliation:
Centro de Ecología, Pesquerías y Oceanografía del Golfo de México, Universidad Autónoma de Campeche, Av. Agustín Melgar S/N Campeche, Campeche, México
G. Gold-Bouchot
Affiliation:
Laboratories of Parasitology and Marine Geochemistry, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310 Mérida, Yucatán, México
J. Rendón-von Osten
Affiliation:
Centro de Ecología, Pesquerías y Oceanografía del Golfo de México, Universidad Autónoma de Campeche, Av. Agustín Melgar S/N Campeche, Campeche, México
G.A. Miranda-Rosas
Affiliation:
Gerencia de Seguridad Industrial y Protección Ambiental- RMNE PEMEX Exploración y Producción, Calle 31 S/N, Edificio Complementario 1, Col. Sta. Isabel, Cd. del Carmen, Campeche, México
*
*Author for correspondence: Fax: Tel: +52 (999) 9812334 E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The pink shrimp Farfantepenaeus duorarum may acquire pollutants, helminths and symbionts from their environment. Statistical associations were studied between the symbionts and helminths of F. duorarum and pollutants in sediments, water and shrimps in Campeche Sound, Mexico. The study area spatially overlapped between offshore oil platforms and natural shrimp mating grounds. Spatial autocorrelation of data was controlled with spatial analysis using distance indices (SADIE) which identifies parasite or pollutant patches (high levels) and gaps (low levels), expressing them as clustering indices compared at each point to produce a measure of spatial association. Symbionts included the peritrich ciliates Epistylis sp. and Zoothamnium penaei and all symbionts were pooled. Helminths included Hysterothylacium sp., Opecoeloides fimbriatus, Prochristianella penaei and an unidentified cestode. Thirty-five pollutants were identified, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides and heavy metals. The PAHs (2–3 ring) in water, unresolved complex mixture (UCM), Ni and V in sediments, and Zn, Cr and heptachlor in shrimps were significantly clustered. The remaining pollutants were randomly distributed in the study area. Juvenile shrimps acquired pesticides, PAHs (2–3 rings) and Zn, while adults acquired PAHs (4–5 rings), Cu and V. Results suggest natural PAH spillovers, and continental runoff of dichlorodiphenyltrichloroethane (DDT), PCBs and PAHs (2–3 ring). There were no significant associations between pollutants and helminths. However, there were significant negative associations of pesticides, UCM and PCBs with symbiont numbers after controlling shrimp size and spatial autocorrelation. Shrimps and their symbionts appear to be promising bioindicators of organic chemical pollution in Campeche Sound.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

References

Agency for Toxic Substances and Disease Registry (ATSDR) (1993) Toxicological profile for heptachlor and heptachlor epoxide. Atlanta, Georgia: US Department of Health and Human Services, Public Health Service (http://www.atsdr.cdc.gov/tfacts12.html).Google Scholar
Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Toxicological profile for total petroleum hydrocarbons (TPH). Atlanta, Georgia: US Department of Health and Human Services, Public Health Service (http://www.atsdr.cdc.gov/tfacts123.html).Google Scholar
Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for polychlorinated biphenyls (PCBs). Atlanta, Georgia: US Department of Health and Human Services, Public Health Service (http://www.atsdr.cdc.gov/tfacts17.html).Google Scholar
Agency for Toxic Substances and Disease Registry (ATSDR) (2004) Toxicological profile for Copper. Atlanta, Georgia: US Department of Health and Human Services, Public Health Service (http://www.atsdr.cdc.gov/tfacts132.html).Google Scholar
Bénitez, J.A. & Bárcenas, C. (1996) Sistemas fluvio-lagunares de la Laguna de Términos: Hábitats críticos susceptibles a los efectos adversos de los plaguicidas. pp. 187201 in Botello, A.V., Rojas-Galavíz, J.L., Benítez, J.A. & Zárate-Lomeli, D. (Eds) Golfo de México, contaminación e impacto ambiental: diagnóstico y tenden-cias. Universidad Autónoma de Campeche, México. Campeche, México, EPOMEX. Serie Científica 5.Google Scholar
Bengtsson, J. & Ebert, D. (1998) Distributions and impacts of microparasites on Daphnia in a rockpool metapopulation. Oecologia 115, 213221.CrossRefGoogle Scholar
Bergey, L., Weis, J.S. & Weis, P. (2002) Mercury uptake by the estuarine species Palaemonetes pugio and Fundulus heteroclitus compared with their parasites. Probopyrus pandalicola and Eustrongylides sp . Marine Pollution Bulletin 44, 10461050.CrossRefGoogle ScholarPubMed
Botello, V.A., Rojas-Galavíz, J.L., Benítez, J.A., & Zárate-Lomeli, D. (1996) (Eds) Golfo de México, contaminación e impacto ambiental: diagnóstico y tendencias. Universidad Autónoma de Campeche, México. Campeche, México, EPOMEX. Serie Científica 5.Google Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited . Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Castrejon, H., Pérez-Castañeda, R. & Defeo, O. (2004) Spatial structure and bathymetric patterns of penaeid shrimps in the southwestern Gulf of Mexico. Fisheries Research 72, 291300.CrossRefGoogle Scholar
Cooley, N.R., Keltner, J.M. & Forester, J. (1972) Mirex and Aroclor 1254: effect on accumulation by Tetrahymena pyriformis strain W. Journal of Protozoology 19, 636638.CrossRefGoogle ScholarPubMed
Couch, J.A. (1978) Diseases, parasites and toxic responses of commercial penaeid shrimps of Gulf of Mexico and South Atlantic coast of North America. Fishery Bulletin 76, 144.Google Scholar
Dutilleul, P. (1993) Modifying the t-test for assessing the correlation between two spatial processes. Biometrics 49, 305314.CrossRefGoogle Scholar
Environmental Protection Agency of the United States (EPA) (1999) Environmental assessment of proposed effluent limitations guidelines and standards for synthetic-based drilling fluids and other non-aqueous drilling fluids in the oil and gas extraction point source category. 248 pp. Office of Water, Office of Science and Technology, Engineering and Analysis Division, US Environmental Protection Agency (EPA-821-B-98-019), Washington, DC 20460.Google Scholar
Environmental Protection Agency of the United States (EPA) (2000) Evaluation guidelines for ecological indicators. 109 pp. Office of Research, and Development. US Environmental Protection Agency (EPA/620/R-99/005), Washington DC 20460.Google Scholar
García-Cuellar, J.A., Arreguín-Sánchez, F., Hernández-Vázquez, S. & Lluch-Cota, D.B. (2004) Impacto ecológico de la industria petrolera en la Sonda de Campeche, México, tras tres décadas de actividad: una revisión. Interciencia 29, 311319.Google Scholar
Hudson, P.J. & Dobson, A.P. (1995) Host–parasite processes and demographic consequences. pp. 155173 in Clayton, D.H. & Moore, J. (Eds) Host-parasite evolution, general principles and avian models, Oxford University Press, Oxford.Google Scholar
James, M.O. (1989) Biotransformation and disposition of PAH in aquatic invertebrates. pp. 6991 in Varanasi, U. (Ed.) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment, Boca Raton, Florida, CRC Press.Google Scholar
Jeanne-Levain, N. (1974) Etude des effets du lindane sur la croissance et le developpement de quelques organismes unicellulaires. Bulletin de la Societé de Zoologie Francaise 99, 105109.Google Scholar
Karvonen, A. & Valtonen, T.E. (2004) Helminth assemblages of whitefish (Coregonus lavaretus) in interconnected lakes: similarity as a function of species specific parasites and geographical separation. Journal of Parasitology 90, 471476.CrossRefGoogle ScholarPubMed
Khan, R.A. (2004) Parasites of fish as biomarkers of environmental degradation: a field study. Bulletin of Environmental Contamination and Toxicology 72, 394400.CrossRefGoogle ScholarPubMed
Khan, R.A. & Payne, J.F. (2004) Comparative study of oil well drill cuttings and polycyclic aromatic hydrocarbons on parasitism in winter flounder: a dose-response study. Bulletin of Environmental Contamination and Toxicology 73, 652658.CrossRefGoogle ScholarPubMed
Keil, J.E., Priester, L.E. & Sandifer, S.H. (1971) Polychlorinated biphenyl (Aroclor 1242): effects of uptake on growth, nucleic acids and chlorophyll of a marine diatom. Bulletin of Environmental Contamination and Toxicology 6, 156159.CrossRefGoogle ScholarPubMed
Kennedy, C.R. (1997) Freshwater fish parasites and environmental quality: an overview and caution. Parassitologia 39, 249254.Google ScholarPubMed
Lafferty, K.D. (1997) Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitology Today 13, 251255.CrossRefGoogle ScholarPubMed
Lewis, J.W., Hoole, D. & Chappell, L.H. (2003) Parasitism and environmental pollution: parasites and hosts as indicators of water quality. Parasitology 126, S1S3.CrossRefGoogle Scholar
Magnani, B., Powers, C.D., Wurster, C.F. & O'Connors, H.B. (1978) Effects of chlordane and heptachlor on the marine dinoflagellate Exuviella baltica Lohman. Bulletin of Environmental Contamination and Toxicology 20, 17.CrossRefGoogle Scholar
Marcogliese, D.J. & Cone, D.K. (2001) Myxozoan communities parasitizing Notropis hudsonius (Cyprinidae) at selected localities on the St. Lawrence River, Quebec: possible effects of urban effluents. Journal of Parasitology 87, 951956.CrossRefGoogle Scholar
Marcogliese, D.J., Nagler, J.J. & Cyr, D.G. (1998) Effects of exposure to contaminated sediments on the parasite fauna of American plaice (Hipoglossoides platessoides). Bulletin of Environmental Contamination and Toxicology 61, 8895.CrossRefGoogle Scholar
Moles, A. & Wade, T.L. (2001) Parasitism and phagocytic function among sand lance Ammodytes hexapterus Pallas exposed to crude oil-laden sediments. Bulletin of Environmental Contamination and Toxicology 66, 528535.CrossRefGoogle ScholarPubMed
Morley, N.J., Crane, M. & Lewis, J.W. (2001) Toxicity of cadmium and zinc to Diplostomum spathaceum (Trematoda: Diplostomidae) cercarial survival. International Journal for Parasitology 31, 12111217.CrossRefGoogle ScholarPubMed
Nimmo, D.R., Hansen, D.J., Couch, J.A., Cooley, N.R., Parrish, P.R. & Lowe, J.I. (1975) Toxicity of Aroclor 1254 and its physiological activity in several estuarine organisms. Archives of Environmental Contamination and Toxicology 3, 2239.CrossRefGoogle ScholarPubMed
O'Connor, T. (1990) Coastal environment quality in the United States, 1990. Chemical contamination in sediment and tissues. 34 pp. Coastal and Estuarine Assessments Division. Office of Oceanography and Marine Assessment, National Ocean Service, National Oceanic and Atmospheric Administration, Rockville, Maryland 20852.Google Scholar
Overstreet, R.M. (1973) Parasites of some penaeid shrimps with emphasis on reared hosts. Aquaculture 2, 105140.CrossRefGoogle Scholar
Overstreet, R.M. (1985) Some parasitological aspects of shrimps culture in the United States. pp. 117122 in Hargis, W.J. Jr (Ed.) Parasitology and pathology of marine organisms of the world Ocean. NOAA Technical Report, NMFS 25.Google Scholar
Overstreet, R.M. (1997) Parasitological data as monitors of environmental health. Parassitologia 39, 169176.Google ScholarPubMed
Perry, J.N. (1995) Spatial aspects of animal and plant distribution in patchy farmland habitats. pp. 221242 in Glen, D.M., Greaves, M.P. & Anderson, H.M. (Eds) Ecology and integrated farming systems. Bristol, John Wiley & Sons.Google Scholar
Perry, J.N. & Dixon, P. (2002) A new method for measuring spatial association in ecological count data. Ecoscience 9, 133141.CrossRefGoogle Scholar
Perry, J.N., Winder, L., Holland, J.M. & Alston, R.D. (1999) Red-blue plots for detecting clusters in count data. Ecology Letters 2, 106113.CrossRefGoogle Scholar
Poulin, R. (1997) Species richness of parasite assemblages: evolution and patterns. Annual Review of Ecology and Systematics 28, 341358.CrossRefGoogle Scholar
Poulin, R. (2003) The decay of similarity with geographical distance in parasite communities of vertebrate hosts. Journal of Biogeography 30, 16091615.CrossRefGoogle Scholar
Poulin, R. & Morand, S. (1999) Geographical distances and the similarity among parasite communities of conspecific host populations. Parasitology 119, 369374.CrossRefGoogle ScholarPubMed
Qian, G. & Pin, N. (2000) Lead content in the monogenean Ancyrocephalus mogurndae and in different organs of its host, the mandarin fish Siniperca chuasi. China Environmental Science 20, 233236.Google Scholar
Ramírez-Rodríguez, M., Arreguín-Sánchez, F. & Lluch-Belda, D. (2003) Recruitment of the pink shrimp Farfantepenaeus duorarum in the southern Gulf of Mexico. Fisheries Research 65, 8188.CrossRefGoogle Scholar
Schimmel, S.C., Patrick, J.M. & JrForester, J. (1977) Toxicity and bioconcentration of BHC and lindane in selected animals. Archives of Environmental Contamination and Toxicology 6, 355363.CrossRefGoogle Scholar
Schmidt, V., Zander, S., Körting, W., Broeg, K., von Westernhagen Dizer, H., Hansen, P.D., Skouras, A. & Steinhagen, D. (2003) Parasites of flounder (Platichthys flesus, L.) from the German Bight, North Sea, and their potential use in biological effects monitoring. Helgoland Marine Research 57, 262271.CrossRefGoogle Scholar
Schuwerack, P.M.M. & Lewis, J.W. (2003a) The mode of action of acute and chronic concentrations of waterborne Cd in the digestive gland of the acclimated infested freshwater crab (Potamonautes warreni). Cell and Tissue Research 312, 249263.CrossRefGoogle ScholarPubMed
Schuwerack, P.M.M. & Lewis, J.W. (2003b) Cellular responses to increasing Cd concentrations in the freshwater crab. Potamonautes warreni, harbouring microbial gill infestations . Cell and Tissue Research 313, 335346.CrossRefGoogle ScholarPubMed
Schuwerack, P.M.M., Lewis, J.W. & Jones, J.W. (2001a) Pathological and physiological changes in the South African freshwater crab Potamonautes warreni Calman induced by microbial gill infestations. Journal of Invertebrate Pathology 77, 269279.CrossRefGoogle ScholarPubMed
Schuwerack, P.M.M., Lewis, J.W. & Jones, J.W. (2001b) The potential use of the South African freshwater crab Potamonautes warreni, as bioindicator species for heavy metal contamination. Ecotoxicology 10, 159166.CrossRefGoogle Scholar
Sericano, J.L., Atlas, E.L., Wade, T.L. & Brooks, J.M. (1990) NOAA's status and trends mussel watch program: chlorinated pesticides and PCBs in oysters (Crassostrea virginica) and sediments from the Gulf of Mexico, 1986–1987. Marine and Environmental Research 29, 161203.CrossRefGoogle Scholar
Siddall, R. & Des Clers, S. (1995) Effect of sewage sludge on the miracidium and cercaria of Zoogonoides viviparus (Trematoda: Digenea). Helminthologia 31, 143153.Google Scholar
Soto, L.A., Sánchez-García, S. López-Veroni, D. (2004) Ambientes influídos por emanaciones naturales de hidrocarburos y gas en el suroeste del golfo de México. Universidad y Ciencia (Special number) 1, 5158.Google Scholar
Sures, B. (2003) Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitology 126, S53S60.CrossRefGoogle Scholar
Sures, B. (2004a) Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends in Parasitology 20, 170177.CrossRefGoogle ScholarPubMed
Sures, B. (2004b) Fish acanthocephalans of the genus Pomphorhynchus sp. as globally applicable bioindicators for metal pollution in the aquatic environment? Wiener Klinische Wochenschrift 116, 1923.Google Scholar
Sures, B., Thielen, F., Baska, F., Messerschmidt, J. & von Bohlen, A. (2005) The intestinal parasite Pomphorhynchus laevis as a sensitive accumulation indicator for the platinum group metals Pt, Pd, and Rh. Environmental Research 98, 8388.CrossRefGoogle ScholarPubMed
Vidal-Martínez, V.M. & Poulin, R. (2003) Spatial and temporal repeatability in parasite community structure of tropical fish hosts. Parasitology 127, 387398.CrossRefGoogle ScholarPubMed
Vidal-Martinez, V.M., Jiménez-Cueto, A.M. & Sima-Álvarez, R. (2002) Parasites and symbionts of native and cultured shrimps from Yucatan, Mexico. Journal of Aquatic Animal Health 14, 5764.2.0.CO;2>CrossRefGoogle Scholar
Vidal-Martínez, V.M., Aguirre-Macedo, M.L., Noreña-Barroso, E., Gold-Bouchot, G., Caballero-Pinzón, P.I. (2003) Potential interactions between the metazoan parasites of the Mayan catfish Ariopsis assimilis and chemical pollution in Chetumal Bay, Mexico. Journal of Helminthology 77, 173184.CrossRefGoogle ScholarPubMed
Yeomans, W., Chubb, J.C. & Sweeting, R.A. (1997) Use of protozoan communities for pollution monitoring. Parassitologia 39, 201212.Google ScholarPubMed
Wade, T.L., Brooks, J.L., Kennicutt, M.C. II McDonald, T.J., Sericano, J.L. & Jackson, T.J. (1993) GERG trace organic contaminant analytical techniques. In Sampling and analytical methods of the National Status and Trends Program, National Benthic Surveillance and Mussel Watch projects 1984–1992, Vol. IV. NOAA Technical Memorandum NOS ORCA 71, 121139.Google Scholar
Williams, H.H. & MacKenzie, K. (2003) Marine parasites as pollution indicators: an update. Parasitology 126, S27S41.CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (1991) Lindane. Environmental Health Criteria 124. International Programme on Chemical Safety. Geneva, http://www.inchem.org/documents/ehc/ehc/ehc124.htm Google Scholar
World Health Organization (WHO) (1993) Polychlorinated biphenyls and terphenyls. Environmental health criteria. International Programme on Chemical Safety, World Health Organization, Geneva, http://www.inchem.org/documents/ehc/ehc/ehc140.htm Google Scholar
World Health Organization (WHO) (2003) Selected nitro- and nitro-oxy-polycyclic aromatic hydrocarbons. Environmental health criteria 229. International Programme on Chemical Safety. World Health Organization. Geneva, http://www.inchem.org/documents/ehc/ehc/ehc229.htm Google Scholar
Zimmermann, S., Sures, B. & Tarachewski, H. (1999) Experimental studies on lead accumulation in the eel-specific endoparasite Anguillicola crassus (Nematoda) and Paratenuisentis ambiguus (Acanthocephala) as compared with their host, Anguilla anguilla . Archives of Environmental Contamination and Toxicology 37, 190195.CrossRefGoogle ScholarPubMed
Zimmermann, S., von Bohlen, A., Messerchmidt, J. & Sures, B. (2005) Accumulation of precious metals platinum, palladium, and rhodium from automobile catalytic converters in Paratenuisentis ambiguus as compared with its fish host, Anguilla anguilla. Journal of Helminthology 79, 8589.CrossRefGoogle ScholarPubMed