Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:18:25.890Z Has data issue: false hasContentIssue false

Phylogenetic relationships among European and Asian representatives of the genus Aspidogaster Baer, 1827 (Trematoda: Aspidogastrea) inferred from molecular data

Published online by Cambridge University Press:  08 June 2017

D.M. Atopkin*
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letija, 159, Vladivostok, 690022, Russia Far Eastern Federal University, Oktyabrskaya str., 27, Vladivostok, 690051, Russia
M.B. Shedko
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letija, 159, Vladivostok, 690022, Russia
S.G. Sokolov
Affiliation:
A.N. Severtzov Institute of Ecology and Evolution RAS, Leninskiy pr. 33, Moscow, 119071, Russia Institute of Biology of Karelian Research Centre of RAS, Petrozavodsk, Russia
A.E. Zhokhov
Affiliation:
I.D. Papanin Institute of the Biology of Inland Water, RAS, Borok, 152742, Russia
*
*Fax: +7 4232310193 E-mail: [email protected]

Abstract

In the present study, phylogenetic relationships of European and Far Eastern representatives of the genus Aspidogaster Baer, 1827 were analysed: A. conchicola Baer, 1827, A. limacoides Diesing, 1834, A. ijimai Kawamura, 1915 and A. chongqingensis Wei, Huang & Dai, 2001. Based on ITS1–5.8S–ITS2 rDNA sequence data, an obvious differentiation was seen between specimens of A. limacoides sensu stricto from the European part of Russia and A. limacoides sensu Chen et al., 2010 from China (13.7%); the latter parasites were recognized as A. chongqingensis. Aspidogaster chongqingensis was more closely related to A. ijimai than to A. limacoides s. str. Specimens of A. ijimai from the Amur River, Khanka Lake (Russian Far East) and China were grouped into a single clade with low intra specific molecular differentiation (d = 0–0.3%). Specimens of A. conchicola from the European part of Russia, the Russian Far East and China also formed a single distinct clade. Genetic differentiation between European and Chinese samples of this species was two times lower (d = 0.45%) than between Russian Far East and European or Chinese samples (d = 0.96%), suggesting a long-term separate existence of A. conchicola in the Russian Far East.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achmerov, A.Kh. (1956) Fauna of parasites from Cyprinus carpio and its epizootological importance. Proceedings of the All-Union Scientific Research Institute of Pond Fish Industry. pp. 206218. Moscow, Food Industry Publisher.Google Scholar
Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions and Automatic Control 19, 716723.Google Scholar
Alves, P.V., Viera, F.M., Santos, C.P., Scholz, T. & Luque, J.L. (2015) A checklist of the Aspidogastrea (Platyhelminthes: Trematoda) of the World. Zootaxa 3918, 339396.CrossRefGoogle ScholarPubMed
Attwood, S.W., Upatham, E.S., Meng, X.H., Qiu, D.-C. & Southgate, V.R. (2002) The phylogeography of Asian Schistosoma (Trematoda: Schistosomatidae). Parasitology 125, 99112.Google Scholar
Attwood, S.W., Upatham, E.S., Zhang, Y.–P., Yang, Z.-Q. & Southgate, V.R. (2004) A DNA-sequence based phylogeny for triculine snails (Gastropoda: Pomatiopsidae: Triculinae), intermediate hosts for Schistosoma (Trematoda: Digenea): phylogeography and the origin of Neotricula. Journal of Zoology 262, 4756.CrossRefGoogle Scholar
Attwood, S.W., Faith, F.A., Mondal, M.M.H., Alim, M.A., Fadjar, S., Rajapakse, R.P.V.J. & Rollinson, D. (2007) A DNA sequence-based study of the Schistosoma indicum (Trematoda: Digenea) group: population phylogeny, taxonomy and historical biogeography. Parasitology 134, 20092010.Google Scholar
Bykhovskaya–Pavlovskaya, I.E. (1987) Class Aspidogastrei – Aspidogastrea Faust et Tang, 1936. pp. 7677 in Bauer, O.N. (Ed.) Identification guide for parasites of freshwater fishes. Leningrad, Nauka.Google Scholar
Chen, D., Wang, G., Yao, W. & Nie, P. (2007) Utility of ITS1–5.8S–ITS2 sequences for species discrimination and phylogenetic inference of two closely related bucephalid digeneans (Digenea: Bucephalidae): Dollfustrema vaneyi and Dollfustrema hefeiensis. Parasitology Research 101, 791800.CrossRefGoogle ScholarPubMed
Chen, M.–X., Gao, Q. & Nie, P. (2007) Phylogenetic systematic inference in the Aspidogastrea (Platyhelminthes, Trematoda) based on the 18S rRNA sequence. Acta Hydrobiologica Sinca 31, 821827.Google Scholar
Chen, M.–X., Zhang, L.–Q., Wen, C.–G., Sun, J. & Gao, Q. (2010) Phylogenetic relationship of species in the genus Aspidogaster (Aspidogastridae, Aspidogastrinae) in China as inferred from ITS rDNA sequences. Acta Hydrobiologica Sinca 34, 312316.Google Scholar
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModeltest2: more models, new heuristics and parallel computing. Nature Methods 9, 772.Google Scholar
Dollfus, R.Ph. (1958) Sous-Classe Aspidogastrea. Annals of Parasitology 33, 305395.Google ScholarPubMed
Dugarov, Zh.N. (2010) Distribution of Aspidogaster conchicola (Aspidogastrea, Aspidogastridae) in the organism of Colletopterum spp. (Bivalvia, Unionidae) of different age from the Chivyrkuiski Gulf of Lake Baikal. Parazitologiya 44, 3037 (in Russian).Google ScholarPubMed
Dvodryadkin, V. (1976) About hosts of Aspidogaster conchicola Baer in the Amur River Basin. Proceedings of II All–Union symposium of fish diseases and parasites of the water invertebrates, Leningrad, pp. 2324.Google Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Gao, Q., Nie, P. & Yao, W.J. (2003) Scanning electron microscopy of Aspidogaster ijimai Kawamura, 1913 and A. conchicola Baer, 1827 (Aspidogastrea, Aspidogastridae) with reference to their fish definitive-host specificity. Parasitology Research 91, 439443.CrossRefGoogle Scholar
Guindon, S. & Gascuel, O. (2003) PhyML: A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.Google Scholar
Hasegawa, M., Kishino, K. & Yano, T. (1985) Dating the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160174.CrossRefGoogle ScholarPubMed
Huelsenbeck, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 23102314.Google Scholar
Jin, X.L., Dai, Z.Y., Liu, X.Y., Zeng, G.C., He, S.L. & Xiang, J.G. (1993) Investigation and studies of fish parasites and pathogen flora in Hunan Province. Journal of Hunan Agricultural University 19, 297389 (in Chinese).Google Scholar
Jousson, O., Bartoli, P. & Pawlowski, J. (2000) Cryptic speciation among intestinal parasites (Trematoda: Digenea) infecting sympatric host fishes (Sparidae). Journal of Evolutionary Biology 13, 778785.CrossRefGoogle Scholar
Kawamura, T. (1915) On two species of aspidocotyleans. Dobutsugaku Zasshi 27, 475480.Google Scholar
Lockyer, A.E., Olson, P.D. & Littlewood, D.T.J. (2003) Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biological Journal of Linnean Society 78, 155171.Google Scholar
Luton, K., Walker, D. & Blair, D. (1992) Comparisons of ribosomal internal transcribed spacers from two congeneric species of flukes (Platyhelminthes: Trematoda: Digenea). Molecular and Biochemical Parasitology 56, 323327.CrossRefGoogle ScholarPubMed
Michelson, E.H. (1970) Aspidogaster conchicola from freshwater gastropods in the United States. Journal of Parasitology 56, 709712.Google Scholar
Nagibina, L.F. & Timofeeva, T.A. (1971) True hosts of Aspidogaster limacoides Diesing, 1834 (Trematoda: Aspidogastrea). Reports of the Russian Academy of Science, Biological series 200, 742744.Google Scholar
Olson, P.D., Cribb, T.H., Tkach, V.V., Bray, R.A. & Littlewood, D.T.J. (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33, 733755.Google Scholar
Pavljuchenko, O.V. (2007) Aspidogastrea (Plathelminthes, Aspidogastrea) the Unionidae parasites (Mollusca, Bivalvia, Unionidae) in Ukraine. Journal of the Derzhavny Archeological University 2, 101107.Google Scholar
Petkevičiūtė, R., Stunzenas, V., Staneviciute, G. & Sokolov, S.G. (2010) Comparison of the developmental stages of some European allocreadiid trematode species and a clarification of their life cycles based on ITS 2 and 28S sequences. Systematic Parasitology 76, 169178.Google Scholar
Popiolek, M., Luczynski, T. & Jarnecki, H. (2007) The first record of Aspidogaster limacoides Diesing, 1834 (Aspidogastridae: Aspidogastrea) in Poland. Wiadomości Parazytologiczne 53, 139141.Google ScholarPubMed
Posada, D. (2003) Using modeltest and paup to select a model of nucleotide substitution. Current Protocols in Bioinformatics. doi: 10.1002/0471250953.bi0605s00.Google Scholar
Rambaut, A. & Drummond, A.J. (2009) Tracer version 1.5.0. Available at http://beast.bio.ed.ac.uk (accessed 29 May 2017).Google Scholar
Rohde, K. (2002) Subclass Aspidogastrea Faust and Tang, 1936. pp. 514 in Jones, A., Bray, R.A. & Gibson, D.I. (Eds) Keys to the Trematoda. Wallingford, CABI Publishing and the Natural History Museum.Google Scholar
Schludermann, C., Laimgruber, S., Konecny, R. & Schabuss, M. (2005) Aspidogaster limacoides Diesing, 1835 (Trematoda, Aspidogastridae): a new parasite of Barbus barbus (L.) (Pisces, Cyprinidae) in Austria. Annal des Natur Museums in Wien 106, 141144.Google Scholar
Shedko, M.B., Sokolov, S.G., Koschelev, V.N., Evteshina, T.V., Mikheev, P.B. & Litovchekno, Zh.S. (2010) Parasites of the endemic sturgeons from the Amur River in the light of literature and original data. Theoretical and practical problems of parasitology. Proceedings of International Scientific Conference, Moscow, Russia. pp. 427431.Google Scholar
Shimazu, T. (2003) Turbellarians and trematodes of freshwater animals in Japan. pp. 6386 in Otsuru, M., Kamegai, S. & Hayashi, S. (Eds) Progress of medical parasitology in Japan. Tokyo, Meguro Parasitological Museum.Google Scholar
Skrjabin, K.I. (1952) Trematodes of the subclass Aspidogastrea Faust et Tang, 1936. pp. 5149 in Skryabin, K.I. (Ed.) Trematodes of animals and man. Moscow, Nauka.Google Scholar
Strelkov, Yu.A. (1971) Digenetic trematodes of fishes of the Amur River basin. Proceedings of Zoological Institute of the Academy of Sciences, Leningrad, Russia, pp. 120139.Google Scholar
Stromberg, P.C. (1970) Aspidobothrean trematodes from Ohio mussels. Ohio Journal of Science 70, 335341.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Tang, C.C. & Tang, C.T. (1980) Life histories of two species of Aspidogastrids and the phylogeny of the group. Acta Hydrobiologica Sinica 7, 153174.Google Scholar
Timofeeva, T.A. (1973) On the identity of Aspidogaster amurensis Achmerov, 1956 and Aspidogaster conchicola Baer, 1827 (Trematode, Aspidogastrea). Parazitologiya 7, 8990 (in Russian).Google Scholar
Timofeeva, T.A. (1975) On aspidogastrid evolution and phylogeny. Parazitologiya 9, 105111 (in Russian).Google Scholar
Timofeeva, T.A. (2005) Ecological approach to the problem of monophyly of Neodermata (Platyhelminthes). Parasitologiya 39, 98101 (in Russian).Google Scholar
Truett, G.E. (2006) Preparation of genomic DNA from animal tissues. pp. 3346 in Kieleczawa, J. (Ed.) The DNA book: Protocols and procedures for the modern molecular biology. Sudbury, Massachusetts, USA, Jones and Bartlett.Google Scholar
Vosnesenskaya, N.G. (1968) Helminthofauna of the Gusinoye Lake. pp. 159–164. Ulan–Ude, Proceedings of Scientific and Production Veterinary Laboratory of Buryat Republic.Google Scholar
Wang, W.J., Li, L.X., Yu, Y., Feng, W., Xiao, C.X., Wang, G.T., Yao, W.J. & Feng, S.J. (1997) Parasite fauna of fishes from Wuling Mountains area, Southwestern China. pp. 253261 in Song, D.X. (Ed.) Invertebrates from Wuling Mountains area, southwestern China. Beijing, Science Press (in Chinese).Google Scholar
Wei, G., Huang, L. & Dai, D.L. (2001) A new species of aspidogastrid (Trematoda: Aspidogastrea: Aspidogastridae) from fishes of Chongqing, China. Acta Zootaxa Sinica 26, 467470.Google Scholar
Yuryshynets, V. & Krasutska, N. (2009) Records of the parasitic worm Aspidogaster conchicola (Baer 1827), in the Chinese pond mussel Sinanodonta woodiana (Lea 1834) in Poland and Ukraine. Aqua Invasions 14, 491494.Google Scholar
Zhang, H. (2006) Three species of Aspidogastrids from Corbicula fluminea (Muller, 1774) in estuary of Jiulong River, South Fujian. Sichuan Journal of Zoology 3, 125.Google Scholar
Zhang, J.Y., Qiu, Z.Z. & Ding, X.J. (1999) Parasites and parasitic diseases of fishes. Beijing, Science Press (in Chinese).Google Scholar