Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-05-01T12:43:24.089Z Has data issue: false hasContentIssue false

New record and phylogenetic assessment of Apopharynx bolodes (Braun, 1902) (Digenea: Psilostomidae), a parasite of Eurasian Coot Fulica atra Linnaeus, 1758 (Aves: Rallidae)

Published online by Cambridge University Press:  05 November 2024

S.A. Vlasenkov
Affiliation:
A.N. Severtsov Institute of Ecology and Evolution, RAS, Leninsky Prospect 33, Moscow, 119071 Russia
L.N. Akimova
Affiliation:
State Research and Production Association “Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources”, Akademicheskaya Street 27, Minsk, 220072, Belarus
S.G. Sokolov*
Affiliation:
A.N. Severtsov Institute of Ecology and Evolution, RAS, Leninsky Prospect 33, Moscow, 119071 Russia
*
Corresponding author: S.G. Sokolov; Email: [email protected]

Abstract

Phylogenetic studies of aberrant species are of considerable scientific interest because their taxonomic rank in traditional systems based on morphological characters is not infrequently overestimated. Apopharynx bolodes (Braun, 1902) is one of the few psilostomid digeneans devoid of the pharynx. This is considered a sufficient basis for assigning it and similar species to the subfamily Apopharynginae. We found A. bolodes in Fulica atra Linnaeus, 1758 from Belarus, described it morphologically, and genotyped it by the 28S rRNA gene and the ITS2 region. It is the first molecular data on A. bolodes and the first record of this digenean species in Belarus. The phylogenetic analysis based on partial sequences of the 28S rRNA gene showed that A. bolodes is closely related to the Sphaeridiotrema spp. (Sphaeridiotrematinae). However, this phylogenetic inference has not received yet support with data on the ITS2 region.

Type
Short Communication
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anaconda Software Distribution (2020) Anaconda documentation. Anaconda Inc. Available at https://docs.anaconda.com/ (accessed August 12, 2023).Google Scholar
Braun, M. (1902) Fascioliden der Vögel. Zoologische Jahrbücher Abteilung für Systematik, Geographie und Biologie der Tiere 16, 1162. [in German]Google Scholar
Bykhovskaya-Pavlovskaya, I.E. (1953) Fauna of trematodes of birds in west Siberia and its dynamics. Parazitologicheskii Sbornik 15, 5117. [in Russian]Google Scholar
Byrd, E.E., and Prestwood, A.K. (1969) A new genus and species, Psilotornus audacirrus (Trematoda: Digenea: Psilostomatidae), from the Wild Turkey in Alabama. Transactions of the American Microscopical Society 88, 366369. doi:10.2307/3224703CrossRefGoogle ScholarPubMed
Cribb, T.H., Adlard, R.D., and Bray, R.A. (1998) A DNA-based demonstration of a three-host life-cycle for the Bivesiculidae (Platyhelminthes: Digenea). International Journal for Parasitology 28, ,17911795. doi:10.1016/s0020-7519(98)00127-1CrossRefGoogle ScholarPubMed
Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. (2012) jModelTest 2: more models, new heuristics and paral-lel computing. Nature Methods 9, 772.CrossRefGoogle Scholar
Delić, A. (1990) Influence of the coot (Fulica atra L. 1758) population on the fish diet in carp ponds. Ribarstvo Jugoslavije 45, 17. [In Croatian]Google Scholar
Edelényi, B. (1974) Mételyek II.—Trematodes II. Közvetett fejlődéstí mételyek— Digenea. Budapest: Akadémiai Kiadó. [in Hungarian]Google Scholar
Filimonova, L.V., and Shalyapina, V.I. (1975) Trematodes of water and marsh birds. In Ryzhikov, KM, Folitarek, SS (eds), Parasites in Natural Complexes of North Kulunda. Novosibirsk: Nauka, Siberian Branch, 3552. [in Russian]Google Scholar
Gouy, M., Guindon, S., and Gascuel, O. (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221224. doi:10.1093/molbev/msp259CrossRefGoogle ScholarPubMed
Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J., and Helder, J. (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. Molecular Biology and Evolution 23, 17921800. doi:10.1093/molbev/msl044CrossRefGoogle ScholarPubMed
Iskova, N.I. (1985) Trematoda. Part 4. Echinostomatata. In Sharpilo, VP (ed), Fauna Ukrainy. Vol. 34. Kiev: Naukova Dumka. 1200. [In Russian]Google Scholar
Kalinina, K.A., Tatonova, Y.V., and Besprozvannykh, V.V. (2022) New species of Psilotrema and Sphaeridiotrema (Psilostomidae Odhner, 1913) in the east Asian region: morphology of developmental stages and genetic data. Parasitology International 88, 102554. doi: 10.1016/j.parint.2022.102554CrossRefGoogle ScholarPubMed
Katoh, K., and Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772780. doi: 10.1093/molbev/mst010CrossRefGoogle ScholarPubMed
Kostadinova, A. (2005) Family Psilostomidae Looss, 1900. In Jones, A., Bray, R. A., & Gibson, D. I. (eds), Keys to the Trematoda.Vol. 2. Wallingford - London: CAB International and The Natural History Museum, 99118.Google Scholar
Kudlai, O., Pulis, E.E., Kostadinova, A., and Tkach, V.V. (2016) Neopsilotrema n. g. (Digenea: Psilostomidae) and three new species from ducks (Anseriformes: Anatidae) in North America and Europe. Systematic Parasitology 93, 307319. doi:10.1007/s11230-016-9634-zCrossRefGoogle Scholar
Kudlai, O., Kostadinova, A., Pulis, E.E., and Tkach, V.V. (2017) The Psilostomidae Looss, 1900 (sensu stricto) (Digenea: Echinostomatoidea): description of three new genera and a key to the genera of the family. Systematic Parasitology 94, 2133 doi:10.1007/s11230-016-9681-5CrossRefGoogle Scholar
Macko, J.K. (1968) Weitere Erkenntnisse über Trematodenfauna von Fulica atra in der Slowakie. Zborník východoslovenského múzea v Košiciach, Seria B 9, 515. [in Slovak]Google Scholar
Miller, M.A., Pfeiffer, W., and Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. pp 18 in Gateway Computing Environments Workshop (GCE). New Orleans, LA. doi:10.1109/GCE.2010.5676129Google Scholar
Metna, F., Lardjane-Hamiti, A., Boukhemza-Zemmouri, N., Boukhemza, M., Merabet, S., and Abba, R. (2015) Diet of the Coot Fulica atra (Aves, Rallidae) in the nature reserve of Lake Réghaïa (Algiers, Algeria). Zoology and Ecology 25, 3445. doi:10.1080/21658005.2014.994363Google Scholar
Morgan, J.A.T., and Blair, D. (1995) Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: an aid to establishing relationships within the 37-collar-spine group. Parasitology 111, 609615. doi:10.1017/S003118200007709XCrossRefGoogle ScholarPubMed
Mouronval, J.B., Guillemain, M., Canny, A., and Poirier, F. (2007) Diet of non-breeding wildfowl Anatidae and Coot Fulica atra on the Perthois gravel pits, northeast France. Wildfowl 57, 6897Google Scholar
Niewiadomska, K. (2015) Przywry Trematoda. Część systematyczna Digenea Echinostomida. Łódź: Wydawnictwo Uniwersytetu Łódzkiego. [in Polish]Google Scholar
Odening, K. (1962) Trematoden aus einheimischen Vögeln des Berliner Tierparks und der Umgebung von Berlin. Biologischen Zentralblatt 81, 419468. [in German]Google Scholar
Odhner, T. (1913) Zum naturlichen System der digen Trematoden. 6. Zoologischer Anzeiger 42, 289318. [in German]Google Scholar
Palm, H.W., Waeschenbach, A., Olson, P.D., and Littlewood, D.T.J. (2009) Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution 52, 351367. doi:10.1016/j.ympev.2009.01.019CrossRefGoogle ScholarPubMed
Pojmańska, T., Machalska, J., and Niewiadomska, K. (1984) Parasites of birds from the lake Gopło and heated lakes of the Konin region. Acta Parasitologica Polonica 29, 277290.Google Scholar
Perrow, M.R., Schutten, J., Howes, J.R., Holzer, T., Madgewick, F.J., and Jowitt, A.J.D. (1997) Interactions between coot (Fulica atra) and submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342, 241255. doi:10.1023/A:1017007911190CrossRefGoogle Scholar
Pukhov, V.I. (1939). On the parasitic worm fauna of the Eurasian coot (Fulica atra). Trudy Rostovskoi Oblastnoi Veterinarnoi Opyitnoi Stantsii 6, 120 128. [in Russian].Google Scholar
Ricci, M., and Carrescia, P.M. (1961) Contributo alla conoscenza dell’elmintofauna degli uccelli d’acqua doice in Italia. I. Trematoda. Rivista di Parassitologia 22, 237258.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., and Huelsenbeck, J.P. (2012) MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61, 539542. doi:10.1093/sysbio/sys029CrossRefGoogle Scholar
Sakai, J. (2015) Food of adult and young Eurasian Coot Fulica atra at Lake Ogawara, Aomori Prefecture, Japan. Japanese Journal of Ornithology 64, 237241. doi:10.3838/jjo.64.237CrossRefGoogle Scholar
Schwelm, J., Kudlai, O., Smit, N.J., Selbach, C., and Sures, B. (2020) High parasite diversity in a neglected host: larval trematodes of Bithynia tentaculata in Central Europe. Journal of Helminthology 94, e120. doi:10.1017/S0022149X19001093CrossRefGoogle Scholar
Serbina, E.A. (2006) Prevalence of trematodas family Psilostomatidae Odhner, 1913 in the South of West Siberi. Sibirskiy Ekologicheskiy Zhurnal 4, 409418.[in Russian]Google Scholar
Sitko, J., Faltýnková, A., and Scholz, T. (2006) Checklist of the trematodes (Digenea) of birds of the Czech and Slovak republics. Prague: Academia.Google Scholar
Skrjabin, K.I. (1947) Family Psilostomatidae Odhner, 1914. In Skrjabin, KI (ed), Osnovy Trematodologii. Vol. I. Moscow and Leningrad: Izdatelstvo AN SSSR, 214260.Google Scholar
Sulgostowska, T. (1960) Intestinal trematodes of mesotrophic lakes: Gołdapiwo and Mamry Północne. Acta Parasitologica Polonica 8, 85114.Google Scholar
Tkach, V.V., Grabda-Kazubska, B., Pawlowski, J., and Swiderski, Z. (1999) Molecular and morphological evidences for close phylogenetic affinities of the genera Macrodera, Leptophallus, Metaleptophallus and Paralepoderma (Digenea, Plagiorchioidea). Acta Parasitologica 44, 170179.Google Scholar
Tkach, V.V., Kudlai, O., and Kostadinova, A. (2016) Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). International Journal for Parasitology 46, 171185. doi:10.1016/j.ijpara.2015.11.001CrossRefGoogle ScholarPubMed
Yamaguti, S. (1958) Systema Helminthum. I. The digenetic trematodes of vertebrates. Part 1. New York and London: Interscience Publishers.Google Scholar
Yamaguti, S. (1971) Synopsis of Digenetic Trematodes of Vertebrates. Vol. 1. Tokyo: Keigaku Publ. Co.Google Scholar
Supplementary material: File

Vlasenkov et al. supplementary material

Vlasenkov et al. supplementary material
Download Vlasenkov et al. supplementary material(File)
File 13.9 KB