Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T00:50:35.520Z Has data issue: false hasContentIssue false

Induction of ulcerative colitis in mice influences the course of infection with the nematode Trichuris muris

Published online by Cambridge University Press:  09 July 2014

M.C. Vegas-Sánchez
Affiliation:
IDCsalud-Fundación Jiménez Díaz, Avda Reyes Católicos, 2, 28040Madrid, Spain
E. Rollán-Landeras
Affiliation:
Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, 28040Madrid, Spain
J.J. García-Rodríguez
Affiliation:
Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense, 28040Madrid, Spain
F. Bolás-Fernández*
Affiliation:
Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense, 28040Madrid, Spain
*

Abstract

The aim of this study was to assess the effect of infection with the nematode whipworm Trichuris muris on the course of chemically induced acute ulcerative colitis in CBA/J mice, a strain proven to be highly resistant to infection with T. muris. Each mouse was infected with 50 embryonated eggs of T. muris by oral gavage. Acute colitis was triggered by administering 4% dextran sulphate sodium (DSS) in the drinking water for nine consecutive days at different times after infection. Concurrent infection and DSS administration exacerbate the severity of the colitis while favouring the permanence of parasites in the intestine. The induction of ulcerative colitis from days 54 to 62 post-infection (p.i.), when all worms had been expelled, ameliorated the course of the inflammatory disease. When ulcerative colitis was triggered earlier on, from days 27 to 35 p.i., the beneficial effects on inflammatory events were clearly shown with signs of mucosal epithelization and regeneration as early as day 1 after DSS administration. Previous infections by T. muris therefore accelerate recovery from subsequently induced inflammatory bowel disease and such an effect assists the nematode to persist in the intestinal niche.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artis, D. (2006) New weapons in the war on worms: identification of putative mechanisms of immune-mediated expulsion of gastrointestinal nematodes. International Journal for Parasitology 36, 723733.CrossRefGoogle ScholarPubMed
Ashour, D.S., Othman, A.A., Shareef, M.M., Gaballah, H.H. & Mayah, W.W. (2014) Interactions between Trichinella spiralis infection and induced colitis in mice. Journal of Helminthology 88, 210218.CrossRefGoogle ScholarPubMed
Bancroft, A.J., Else, K.J. & Grencis, R.K. (1994) Low-level infection with Trichuris muris significantly affects the polarization of the CD4 response. European Journal of Immunology 24, 31133118.CrossRefGoogle ScholarPubMed
Cliffe, L.J., Humphreys, N.E., Lane, T.E., Potten, C.S., Booth, C. & Grencis, R.K. (2005) Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308, 14631465.CrossRefGoogle ScholarPubMed
Danese, S., Sans, M. & Fiochi, C. (2004) Inflammatory bowel disease: the role of environmental factors. Autoimmunity Reviews 3, 394400.CrossRefGoogle ScholarPubMed
Else, K.J., Wakelin, D., Wasson, D.L. & Hauda, K.M. (1990) The influence of genes mapping within the major histocompatibility complex on resistance to Trichuris muris infection in mice. Parasitology 101, 6167.CrossRefGoogle ScholarPubMed
Garud, S. & Peppercorn, M.A. (2009) Ulcerative colitis: current treatment strategies and future prospects. Therapeutical Advances in Gastroenterology 2, 99108.CrossRefGoogle ScholarPubMed
Gaudio, E., Taddei, G., Vetuschi, A., Sferra, R., Frieri, G., Ricciardi, G. & Caprilli, R. (1999) Dextran sulfate sodium (DSS) colitis in rats: clinical, structural and ultrastructural aspects. Digestive Diseases and Sciences 44, 14581475.CrossRefGoogle ScholarPubMed
Hanauer, S. (2006) Inflammatory bowel disease: epidemiology, pathogenesis and therapeutic opportunities. Inflammatory Bowel Diseases 12, S3S9.CrossRefGoogle ScholarPubMed
Herbert, D.R., Yang, J.Q., Hogan, S.P., Groschwitz, K., Khodoun, M., Munitz, A., Orekov, T., Perkins, C., Wang, Q., Brombacher, F., Urban, J.F. Jr, Rothenberg, M.E. & Finkelman, F.D. (2009) Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection. Journal of Experimental Medicine 206, 29472957.CrossRefGoogle ScholarPubMed
Khan, W.I., Blennerhasset, P.A., Varghese, A.K., Chowdhury, S.K., Omsted, P., Deng, Y. & Collins, S.M. (2002) Intestinal nematode infection ameliorates experimental colitis in mice. Infection and Immunity 70, 59315937.CrossRefGoogle ScholarPubMed
Levison, S.E., McLaughlin, J.T., Zeef, L.A., Fisher, P., Grencis, R.K. & Pennock, J.L. (2010) Colonic transcriptional profiling in resistance and susceptibility to trichuriasis: phenotyping a chronic colitis and lessons for iatrogenic helminthosis. Inflammatory Bowel Diseases 16, 20652079.CrossRefGoogle ScholarPubMed
Levison, S.E., Fisher, P., Hankinson, J., Zeef, L., Eyre, S., Ollier, W.E., McLaughlin, J.T., Brass, A., Grencis, R.K. & Pennock, J.L. (2013) Genetic analysis of the Trichuris muris-induced model of colitis reveals QTL overlap and a novel gene cluster for establishing colonic inflammation. BMC Genomics 14, 127.CrossRefGoogle Scholar
Molodecky, N.A., Soon, I.S., Rabi, D.M., Ghali, W.A., Ferris, M., Chernoff, G., Benchimol, E.I., Panaccione, R., Ghosh, S., Barkema, H.W. & Kaplan, G.G. (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 4654.CrossRefGoogle ScholarPubMed
Motomura, Y., Wang, H., Deng, Y., El-Sharkawy, T.T., Verdu, E.F. & Khan, W.I. (2008) Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis. Clinical and Experimental Immunology 155, 8895.CrossRefGoogle Scholar
Munitz, A., Waddell, A., Seidu, L., Cole, E.T., Ahrens, R., Hogan, S.P. & Rothenberg, M.E.J. (2008) Resistin-like molecule alpha enhances myeloid cell activation and promotes colitis. Allergy and Clinical Immunology 122, 12001207.CrossRefGoogle ScholarPubMed
Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y. & Nakaya, R. (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694702.CrossRefGoogle ScholarPubMed
Patel, N., Kreider, T., Urban, J.F. Jr & Gause, W.C. (2009) Characterisation of effector mechanisms at the host:parasite interface during the immune response to tissue-dwelling intestinal nematode parasites. International Journal for Parasitology 39, 1321.CrossRefGoogle ScholarPubMed
Ponder, A. & Long, M.D. (2013) A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clinical Epidemiology 5, 237247.Google ScholarPubMed
Reardon, C., Sanchez, A., Hogaboam, C.M. & Mckay, D.M. (2001) Tapeworm infection reduces epithelial ion transport abnormalities in murine dextran sulphate sodium-induced colitis. Infection and Immunity 69, 44174423.CrossRefGoogle Scholar
Reddy, A. & Fried, B. (2007) The use of Trichuris suis and other helminth therapies to treat Crohn's disease. Parasitology Research 100, 921927.CrossRefGoogle ScholarPubMed
Sepúlveda, S.E., Beltrán, C.J., Peralta, A., Rivas, P., Rojas, N., Figueroa, C., Quera, R. & Hermoso, M.A. (2008) Inflammatory bowel diseases: an immunological approach. Revista Medica de Chile 136, 367375.Google ScholarPubMed
Summers, R.W., Elliot, D.E., Urban, J.F. Jr & Thomson, R.A. (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128, 825832.CrossRefGoogle ScholarPubMed
Sutton, T.L., Zhao, A., Madden, K.B., Elfrey, J.E., Tuft, B.A., Sullivan, C.A., Urban, J.F. Jr & Shea-Donohue, T. (2008) Anti-inflammatory mechanisms of enteric Heligmosomoides polygyrus infection against trinitrobenzene sulfonic acid-induced colitis in a murine model. Infection and Immunity 76, 47724782.CrossRefGoogle ScholarPubMed
Taylor, B.C., Zaph, C., Troy, A.E., Du, Y., Guild, K.J., Comeau, M.R. & Artis, D. (2009) SLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. Journal of Experimental Medicine 206, 655667.CrossRefGoogle Scholar
Theede, K., Dahlerup, J.F., Fallingborg, J., Hvas, C.L., Kjeldsen, J., Munck, L.K. & Nordgaard-Lassen, I. (2013) Biologic therapy in inflammatory bowel disease. Danish Medical Journal 60, B4652.Google ScholarPubMed
Wakelin, D. (1976) Aquired immunity to Trichuris muris in the albino laboratory mouse. Parasitology 57, 515524.CrossRefGoogle Scholar
Wang, A., Fernando, M., Leung, G., Phan, V., Smyth, D. & Mckay, D.M. (2010) Exacerbation of oxazolone colitis by infection with the helminth Hymenolepis diminuta. American Journal of Pathology 177, 28502858.CrossRefGoogle ScholarPubMed
Weinstock, J.V., Summers, R.W. & Elliot, D.E. (2005) Role of helminths in regulating mucosal inflammation. Springer Seminars in Immunology 27, 249271.CrossRefGoogle ScholarPubMed
Williams, K.L., Fuller, C.R. & Dieleman, L.A. (2001) Enhanced survival and mucosal repair after dextran sodium sulfate-induced colitis in transgenic mice that overexpress growth hormone. Gastroenterology 120, 925937.CrossRefGoogle ScholarPubMed
Xavier, R.J. & Podolsky, D.K. (2007) Unraveling the pathogenesis of inflammatory bowel disease. Nature 448, 427434.CrossRefGoogle ScholarPubMed