Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-06T02:43:20.943Z Has data issue: false hasContentIssue false

Immunosuppressive PAS-1 is an excretory/secretory protein released by larval and adult worms of the ascarid nematode Ascaris suum

Published online by Cambridge University Press:  07 April 2014

M.F.P. Antunes
Affiliation:
Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil
T.O. Titz
Affiliation:
Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil
I.F.C. Batista
Affiliation:
Peptide and Protein Sequencing Unit, Butantan Institute, São Paulo, Brazil
R. Marques-Porto
Affiliation:
Peptide and Protein Sequencing Unit, Butantan Institute, São Paulo, Brazil
C.F. Oliveira
Affiliation:
Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil
C.A. Alves de Araujo*
Affiliation:
Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil
M.F. Macedo-Soares
Affiliation:
Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil

Abstract

Helminths use several strategies to evade and/or modify the host immune response, including suppression or inactivation of the host antigen-specific response. Several helminth immunomodulatory molecules have been identified. Our studies have focused on immunosuppression induced by the roundworm Ascaris suum and an A. suum-derived protein named protein 1 from A. suum (PAS-1). Here we assessed whether PAS-1 is an excretory/secretory (E/S) protein and whether it can suppress lipopolysaccharide-induced inflammation. Larvae from infective eggs were cultured in unsupplemented Dulbecco's modified Eagle medium (DMEM) for 2 weeks. PAS-1 was then measured in the culture supernatants and in adult A. suum body fluid at different time points by enzyme-linked immunosorbent assay (ELISA) with the monoclonal antibody MAIP-1. Secreted PAS-1 was detected in both larval culture supernatant and adult body fluid. It suppressed lipopolysaccharide (LPS)-induced leucocyte migration and pro-inflammatory cytokine production, and stimulated interleukin (IL)-10 secretion, indicating that larval and adult secreted PAS-1 suppresses inflammation in this model. Moreover, the anti-inflammatory activity of PAS-1 was abolished by treatment with MAIP-1, a PAS-1-specific monoclonal antibody, confirming the crucial role of PAS-1 in suppressing LPS-induced inflammation. These findings demonstrate that PAS-1 is an E/S protein with anti-inflammatory properties likely to be attributable to IL-10 production.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: St Jude Children's Research Hospital, 262 Danny Thomas Place, Room D5055, Mail Stop 321, Memphis, TN 38 105 USA.

These authors contributed equally to this work.

References

Allen, J.E. & MacDonald, A.S. (1998) Profound suppression of cellular proliferation mediated by the secretions of nematodes. Parasite Immunology 20, 241247.CrossRefGoogle ScholarPubMed
Araujo, C.A. & Macedo-Soares, M.F. (2012) Derived products of helminths in the treatment of inflammation. pp. 499530 in Pereira, C. (Ed.) Allergic diseases: Highlights in the clinic, mechanism and treatment. Reactions and anaphylaxis. Rijeka, Croatia, InTech.Google Scholar
Araujo, C.A., Perini, A., Martins, M.A., Macedo, M.S. & Macedo-Soares, M.F. (2008) PAS-1, a protein from Ascaris suum, modulates allergic inflammation via IL-10 and IFN-gamma, but not IL-12. Cytokine 44, 335341.CrossRefGoogle Scholar
Barr, P.J., Inselburg, J., Green, K.M., Kansopon, J., Hahm, B.K., Gibson, H.L., Lee-Ng, C.T., Bzik, D.J., Li, W.B. & Bathurst, I.C. (1991) Immunogenicity of recombinant Plasmodium falciparum SERA proteins in rodents. Molecular and Biochemical Parasitology 45, 159170.CrossRefGoogle ScholarPubMed
Barriga, O.O. (1984) Immunomodulation by nematodes: a review. Veterinary Parasitology 14, 299320.CrossRefGoogle ScholarPubMed
Christie, J.F., Dunbar, B. & Kennedy, M.W. (1993) The ABA-1 allergen of the nematode Ascaris suum: epitope stability, mass spectrometry, and N-terminal sequence comparison with its homologue in Toxocara canis . Clinical and Experimental Immunology 92, 125132.CrossRefGoogle ScholarPubMed
Crandall, C.A. (1976) Ascaris suum: homocytotropic antibody responses in mice. Experimental Parasitology 39, 6973.Google Scholar
de Araujo, C.A., Perini, A., Martins, M.A., Macedo, M.S. & Macedo-Soares, M.F. (2010) PAS-1, an Ascaris suum protein, modulates allergic airway inflammation via CD8+γδTCR+ and CD4+CD25+FoxP3+ T cells. Scandinavian Journal of Immunology 72, 491503.CrossRefGoogle ScholarPubMed
de Macedo, M.S. & Mota, I. (1980) Antigenic competition in IgE antibody production. I. Establishment of parameters involved in primary and secondary responses. Immunology 40, 701708.Google Scholar
de Macedo Soares, M.F. & de Macedo, M.S. (2007) Modulation of anaphylaxis by helminth-derived products in animal models. Current Allergy and Asthma Reports 7, 5661.CrossRefGoogle ScholarPubMed
Dinarello, C.A. (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77, 16271652.CrossRefGoogle ScholarPubMed
Dinarello, C.A. (2011) Blocking interleukin-1β in acute and chronic autoinflammatory diseases. Journal of Internal Medicine 269, 1628.CrossRefGoogle ScholarPubMed
Douvres, F.W. & Urban, J.F. Jr (1983) Factors contributing to the in vitro development of Ascaris suum from second-stage larvae to mature adults. Journal of Parasitology 69, 549558.CrossRefGoogle Scholar
Edman, P. (1949) A method for the determination of the amino acid sequence in peptides. Archives of Biochemistry 22, 475476.Google ScholarPubMed
Elias, D., Akuffo, H. & Britton, S. (2006) Helminthes could influence the outcome of vaccines against TB in the tropics. Parasite Immunology 28, 507513.CrossRefGoogle ScholarPubMed
Enobe, C.S., Araujo, C.A., Perini, A., Martins, M.A., Macedo, M.S. & Macedo-Soares, M.F. (2006) Early stages of Ascaris suum induce airway inflammation and hyperreactivity in a mouse model. Parasite Immunology 28, 453461.CrossRefGoogle ScholarPubMed
Fagerholm, H.P., Nansen, P., Roepstorff, A., Frandsen, F. & Eriksen, L. (2000) Differentiation of cuticular structures during the growth of the third-stage larva of Ascaris suum (Nematoda, Ascaridoidea) after emerging from the egg. Journal of Parasitology 86, 421427.Google Scholar
Falcone, F.H., Loukas, A., Quinnell, R.J. & Pritchard, D.I. (2004) The innate allergenicity of helminth parasites. Clinical Reviews in Allergy & Immunology 26, 6172.Google Scholar
Fallon, P.G. & Mangan, N.E. (2007) Suppression of TH2-type allergic reactions by helminth infection. Nature Reviews Immunology 7, 220230.Google Scholar
Finkelman, F.D., Shea-Donohue, T., Goldhill, J., Sullivan, C.A., Morris, S.C., Madden, K.B., Gause, W.C. & Urban, J.F. Jr (1997) Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annual Review of Immunology 15, 505533.Google Scholar
Geenen, P.L., Bresciani, J., Boes, J., Pedersen, A., Eriksen, L., Fagerholm, H.P. & Nansen, P. (1999) The morphogenesis of Ascaris suum to the infective third-stage larvae within the egg. Journal of Parasitology 85, 616622.Google Scholar
Groux, H. (2003) Type 1 T-regulatory cells: their role in the control of immune responses. Transplantation 75, 8S12S.CrossRefGoogle ScholarPubMed
Hartgers, F.C. & Yazdanbakhsh, M. (2006) Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunology 28, 497506.Google Scholar
Heinrich, P.C., Behrmann, I., Haan, S., Hermanns, H.M., Muller-Newen, G. & Schaper, F. (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochemical Journal 374, 120.CrossRefGoogle ScholarPubMed
Hinck, L.W. & Ivey, M.H. (1976) Proteinase activity in Ascaris suum eggs, hatching fluid, and excretions–secretions. Journal of Parasitology 62, 771774.Google Scholar
Itami, D.M., Oshiro, T.M., Araujo, C.A., Perini, A., Martins, M.A., Macedo, M.S. & Macedo-Soares, M.F. (2005) Modulation of murine experimental asthma by Ascaris suum components. Clinical and Experimental Allergy 35, 873879.CrossRefGoogle ScholarPubMed
Jaskoski, B.J. (1962) Paper chromatography of some fractions of Ascaris suum eggs. Experimental Parasitology 12, 1924.CrossRefGoogle ScholarPubMed
Kasuga-Aoki, H., Tsuji, N., Suzuki, K., Isobe, T. & Yoshihara, S. (2000) Identification of surface proteins and antigens from larval stages of Ascaris suum by two-dimensional electrophoresis. Parasitology 121, 671677.Google Scholar
Kennedy, M.W. (2000) The nematode polyprotein allergens/antigens. Parasitology Today 16, 373380.CrossRefGoogle ScholarPubMed
Kennedy, M.W., Brass, A., McCruden, A.B., Price, N.C., Kelly, S.M. & Cooper, A. (1995) The ABA-1 allergen of the parasitic nematode Ascaris suum: fatty acid and retinoid binding function and structural characterization. Biochemistry 34, 67006710.Google Scholar
Levine, H.S. & Silverman, P.H. (1969) Cultivation of Ascaris suum larvae in supplemented and unsupplemented chemically defined media. Journal of Parasitology 55, 1721.Google Scholar
Lima, C., Perini, A., Garcia, M.L., Martins, M.A., Teixeira, M.M. & Macedo, M.S. (2002) Eosinophilic inflammation and airway hyper-responsiveness are profoundly inhibited by a helminth (Ascaris suum) extract in a murine model of asthma. Clinical and Experimental Allergy 32, 16591666.Google Scholar
Ludwig-Portugall, I. & Layland, L.E. (2012) TLRs, Treg, and B cells, an interplay of regulation during helminth infection. Frontiers in Immunology 3, 8.Google Scholar
Lynch, N.R., Palenque, M., Hagel, I. & DiPrisco, M.C. (1997) Clinical improvement of asthma after anthelminthic treatment in a tropical situation. American Journal of Respiratory and Critical Care Medicine 156, 5054.Google Scholar
Macedo, M.S. & Barbuto, J.A. (1988) Murine delayed type hypersensitivity is suppressed by Ascaris suum extract. Brazilian Journal of Medical and Biological Research 21, 523525.Google Scholar
Maizels, R.M. & Yazdanbakhsh, M. (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nature Reviews Immunology 3, 733744.CrossRefGoogle ScholarPubMed
Maizels, R.M., Balic, A., Gomez-Escobar, N., Nair, M., Taylor, M.D. & Allen, J.E. (2004) Helminth parasites – masters of regulation. Immunology Reviews 201, 89116.CrossRefGoogle ScholarPubMed
Meenan, N.A., Ball, G., Bromek, K., Uhrin, D., Cooper, A., Kennedy, M.W. & Smith, B.O. (2011) Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of Ascaris reveals a novel fold and two discrete lipid-binding sites. PLoS Neglected Tropical Diseases 5, e1040.Google Scholar
Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. (2001) Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology 19, 683765.CrossRefGoogle ScholarPubMed
Ogilvie, B.M. & Wilson, R.J. (1976) Evasion of the immune response by parasites. British Medical Bulletin 32, 177181.Google Scholar
Oshiro, T.M., Rafael, A., Enobe, C.S., Fernandes, I. & Macedo-Soares, M.F. (2004) Comparison of different monoclonal antibodies against immunosuppressive proteins of Ascaris suum . Brazilian Journal of Medical and Biological Research 37, 223226.CrossRefGoogle ScholarPubMed
Oshiro, T.M., Macedo, M.S. & Macedo-Soares, M.F. (2005) Anti-inflammatory activity of PAS-1, a protein component of Ascaris suum . Inflammation Research 54, 1721.CrossRefGoogle ScholarPubMed
Paterson, J.C., Garside, P., Kennedy, M.W. & Lawrence, C.E. (2002) Modulation of a heterologous immune response by the products of Ascaris suum . Infection and Immunity 70, 60586067.CrossRefGoogle ScholarPubMed
Rose-John, S. (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International Journal of Biological Sciences 8, 12371247.Google Scholar
Sabat, R., Grutz, G., Warszawska, K., Kirsch, S., Witte, E., Wolk, K. & Geginat, J. (2010) Biology of interleukin-10. Cytokine and Growth Factor Reviews 21, 331344.Google Scholar
Slotved, H.C., Eriksen, L., Murrell, K.D. & Nansen, P. (1998) Early Ascaris suum migration in mice as a model for pigs. Journal of Parasitology 84, 1618.Google Scholar
Smits, H.H., Everts, B., Hartgers, F.C. & Yazdanbakhsh, M. (2010) Chronic helminth infections protect against allergic diseases by active regulatory processes. Current Allergy and Asthma Reports 10, 312.Google Scholar
Soares, M.F. & Araujo, C.A. (2008) Helminth products as a potential therapeutic strategy for inflammatory diseases. Inflammation and Allergy Drug Targets 7, 113118.Google Scholar
Soares, M.F., Mota, I. & Macedo, M.S. (1992) Isolation of Ascaris suum components which suppress IgE antibody responses. International Archives of Allergy and Immunology 97, 3743.Google Scholar
Spence, H.J., Moore, J., Brass, A. & Kennedy, M.W. (1993) A cDNA encoding repeating units of the ABA-1 allergen of Ascaris . Molecular and Biochemical Parasitology 57, 339343.Google Scholar
Stromberg, B.E., Khoury, P.B. & Soulsby, E.J. (1977) Development of larvae of Ascaris suum from the third to the fourth stage in a chemically defined medium. International Journal of Parasitology 7, 149L.CrossRefGoogle Scholar
Sylk, S.R., Stromberg, B.E. & Soulsby, E.J. (1974) Development of Ascaris suum larvae from the third to fourth stage, in vitro . International Journal of Parasitology 4, 261265.Google Scholar
Urban, J.F. Jr & Douvres, F.W. (1981) In vitro development of Ascaris suum from third- to fourth-stage larvae and detection of metabolic antigens in multi-well culture systems. Journal of Parasitology 67, 800806.Google Scholar
Urban, J.F. Jr, Steenhard, N.R., Solano-Aguilar, G.I., Dawson, H.D., Iweala, O.I., Nagler, C.R., Noland, G.S., Kumar, N., Anthony, R.M., Shea-Donohue, T., Weinstock, J. & Gause, W.C. (2007) Infection with parasitic nematodes confounds vaccination efficacy. Veterinary Parasitology 148, 1420.CrossRefGoogle ScholarPubMed
van den Biggelaar, A.H., Rodrigues, L.C., van Ree, R., van der Zee, J.S., Hoeksma-Kruize, Y.C., Souverijn, J.H., Missinou, M.A., Borrmann, S., Kremsner, P.G. & Yazdanbakhsh, M. (2004) Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. Journal of Infectious Diseases 189, 892900.Google Scholar
Williams, J.F. & Soulsby, E.J. (1970) Antigenic analysis of developmental stages of Ascaris suum. I. Comparison of eggs, larvae and adults. Experimental Parasitology 27, 150162.Google Scholar
Xia, Y., Spence, H.J., Moore, J., Heaney, N., McDermott, L., Cooper, A., Watson, D.G., Mei, B., Komuniecki, R. & Kennedy, M.W. (2000) The ABA-1 allergen of Ascaris lumbricoides: sequence polymorphism, stage and tissue-specific expression, lipid binding function, and protein biophysical properties. Parasitology 120, 211224.Google Scholar