Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:11:25.989Z Has data issue: false hasContentIssue false

Hymenolepis microstoma: direct life cycle in immunodeficient mice

Published online by Cambridge University Press:  12 April 2024

J. Andreassen
Affiliation:
Department of Parasitology, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan, :
A. Ito*
Affiliation:
Animal Laboratory for Medical Research, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan, :
M. Ito
Affiliation:
Central Institute for Experimental Animals, Miyamae, Kawasaki, 216-0001, Japan
M. Nakao
Affiliation:
Animal Laboratory for Medical Research, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan, :
K. Nakaya
Affiliation:
Animal Laboratory for Medical Research, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
*
*Author for correspondenceFax: +81-166-68-2429 Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mouse bile duct tapeworm Hymenolepis microstoma requires beetles as the obligatory intermediate host. However, when congenitally athymic NMRI-nu mice were infected with the mature tapeworm and allowed to eat their own faeces with tapeworm eggs, the oncospheres penetrated the intestinal tissue and developed to cysticercoids. After excysting, growth to adult worms occurs in the lumen of the small intestine and bile duct. Furthermore, the same happened when NMRI-nu mice, non-obese diabetic severe combined immunodeficiency (NOD/Shi-scid) mice and NOD/Shi-scid, IL-2 Rγnull (NOG) mice were orally inoculated with shell-free eggs of this parasite. Differences between the cysticercoids of H. microstoma and H. nana developed in the mouse intestinal tissues were: (i) the time course for the development of fully matured cysticercoids of H. microstoma in mice was about 11 days but only 4 days for H. nana; and (ii) cysticercoids of H. microstoma developed in mice had a tail while those of H. nana had none.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

References

Berntzen, A.K. & Voge, M. (1965) In vitro hatching of oncospheres of four hymenolepidid cestodes. Journal of Parasitology 51, 235242.CrossRefGoogle ScholarPubMed
Christianson, S.W., Greiner, D.L., Hesselton, R.A., Leif, J.H., Wagar, E.J., Schweitzer, I.B., Rajan, T.V., Gott, B., Roopensian, D.C. & Schultz, L.D. (1997) Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice. Journal of Immunology 158, 35783586.CrossRefGoogle ScholarPubMed
Ito, A., Yamamoto, M. & Okamoto, K. (1977) Photomicroscopic observation of infective cysticercoid and the earlier stages of Hymenolepis nana isolated from the mouse intestine. Japanese Journal of Parasitology 26, 345349.Google Scholar
Ito, A., Itoh, M., Andreassen, J. & Onitake, K. (1989) Stage-specific antigens of Hymenolepis microstoma recognized in BALB/c mice. Parasite Immunology 11, 453462.CrossRefGoogle ScholarPubMed
Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., Ueyama, Y., Koyanagi, Y., Suganuma, K., Tsuji, K., Heike, T. & Nakahata, T. (2002) NOD/SCID/γ c null mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 31753182.CrossRefGoogle ScholarPubMed
McGuirk, J., Yan, Y., Childs, B., Fernandez, J., Barnett, L., Jagiello, C., Collins, N., O'Reilly, R.J. (1998) Differential growth patterns in SCID mice of patient-derived chronic myelogenous leukemias. Bone Marrow Transplantation 22, 367374.CrossRefGoogle ScholarPubMed
Okamoto, M., Agatsuma, T., Kurosawa, T. & Ito, A. (1997) Phylogenetic relationships of three hymenolepidid species inferred from nuclear ribosomal and mitochondrial DNA sequences. Parasitology 115, 661666.CrossRefGoogle ScholarPubMed
Onitake, K., Sasaki, J., Andreassen, J. & Ito, A. (1990) Hymenolepis microstoma: oncospheres invade the intestinal tissue of the definitive host. Journal of Helminthology 64, 168170.CrossRefGoogle ScholarPubMed
Robin, C., Pflumio, F., Vainchenker, W. & Coulobmbel, L. (1999) Identification of lymphomyeloid primitive progenitor cells in fresh human cord blood and in the marrow of nonobese diabetic severe combined immunodeficient (NOD-SCID) mice transplanted with human CD34 (+) cord blood cells. Journal of Experimental Medicine 189, 16011610.CrossRefGoogle ScholarPubMed
Schmidt, G.D. (1986) CRC handbook of tapeworm identification. 675 pp. Boca Raton, CRC Press.Google Scholar
Seidel, J.S. (1975) The life cycle in vitro of Hymenolepis microstoma (Cestoda). Journal of Parasitology 61, 677681.CrossRefGoogle ScholarPubMed
Voge, M. (1964) Development of Hymenolepis microstoma (Cestoda: Cyclophyllidea) in the intermediate host Tribolium confusum . Journal of Parasitology 50, 7780.CrossRefGoogle ScholarPubMed
Voge, M. & Heyneman, D. (1957) Development of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Hymenolepididae) in the intermediate host Tribolium confusum . University of California Publications in Zoology 59, 549579.Google Scholar
Yahata, T., Ando, K., Nakamura, Y., Ueyama, Y., Shimamura, K., Tamaoki, N., Kato, S. & Hotta, T. (2002) Functional human T lymphocyte development from cord blood CD34 + cells in nonobese diabetic/ Shi-scid, IL-2 receptor γ null mice. Journal of Immunology 169, 204209.CrossRefGoogle Scholar