Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T23:49:29.877Z Has data issue: false hasContentIssue false

Human density, economic level and frequency of canine helminths in Buenos Aires

Published online by Cambridge University Press:  06 April 2021

D. Rubel*
Affiliation:
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Buenos Aires, Argentina. Ciudad Universitaria, Av. Cantilo s/n, Núñez, Ciudad Autónoma de Buenos Aires, CP 1428 CONICET – Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA). Buenos Aires, Argentina. Ciudad Universitaria, Av. Cantilo s/n, Núñez, Ciudad Autónoma de Buenos Aires, CP 1428
N. Flaibani
Affiliation:
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Buenos Aires, Argentina. Ciudad Universitaria, Av. Cantilo s/n, Núñez, Ciudad Autónoma de Buenos Aires, CP 1428 CONICET – Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA). Buenos Aires, Argentina. Ciudad Universitaria, Av. Cantilo s/n, Núñez, Ciudad Autónoma de Buenos Aires, CP 1428
*
Author for correspondence: D. Rubel, E-mail: [email protected]

Abstract

The aim of this study was to explore through cross-sectional study the variation in the prevalence of parasitic helminths in canine faeces collected from green spaces of Buenos Aires according to the human density (HD) and economic level (EL) in the surroundings. HD and EL were considered as independent variables with three categories each. Twenty public squares (one hectare of surface) were randomly selected for each existing combination of the two independent variables. Ten random samples of fresh canine faeces were obtained in each square and analysed for helminths by the sedimentation and flotation techniques. The prevalence for each of the species was analysed using generalized linear models (GLM). The prevalence was modelled with a binomial error distribution and a logit link function. Helminth eggs were detected in 45 out of the 200 (22.5%) faecal samples collected and in 18 of the 20 green spaces sampled. The species observed were Ancylostoma caninum (13% of samples), Trichuris vulpis (8%) and Toxocara canis (4.5%). The GLM indicated that the prevalence of A. caninum in the slum areas (very high HD and very low EL) was higher than that in the other areas studied. However, the HD seemed to contribute more than the EL to the variations in the prevalence of A. caninum in faecal samples. The GLM showed no differences in the prevalence of the other parasite species for the different levels of the independent variables.

Type
Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarado-Esquivel, C, Romero-Salas, D, Aguilar-Domínguez, M, Cruz-Romero, A, Ibarra-Priego, N and Pérez-de-León, A (2015) Epidemiological assessment of intestinal parasitic infections in dogs at animal shelter in Veracruz, Mexico. Asian Pacific Journal of Tropical Biomedicine 5, 3439.CrossRefGoogle Scholar
Andresiuk, M, Denegri, G, Esardella, N and Hollmann, P (2003) Encuesta coproparasitológico canina realizado en plazas públicas de la ciudad de Mar del Plata, Buenos Aires, Argentina. Parasitología Latinoamericana 58, 1722.CrossRefGoogle Scholar
Arasu, P and Kwak, D (1999) Developmental arrest and pregnancy-induced transmammary transmission of ancylostoma caninum larvae in the murine model. The Journal of Parasitology 85, 779784.CrossRefGoogle ScholarPubMed
Betti, A, Cardillo, N, Diez, M, Cornero, F and Braida, M (2007) Parasitosis entéricas en caninos de un área del Gran Buenos Aires. 2003–2004. InVet 9, 5358.Google Scholar
Brusoni, C, Dezzotti, A, Fernández Canigia, J and Lara, J (2007) Size and structure of the dog population in San Martín de Los Andes (Neuquén). Analecta Veterinaria 27, 1123.Google Scholar
Burke, TM and Roberson, EL (1985) Prenatal and lactational transmission of Toxocara canis and Ancylostoma caninum: Experimental infection of the bitch at midpregnancy and at parturition. International Journal for Parasitology 15, 485490.CrossRefGoogle ScholarPubMed
Butler, JRA and Bingham, J (2000) Demography and dog-human relationships of the dog population in Zimbabwean communal lands. Veterinary Records 14, 442446.CrossRefGoogle Scholar
Bwalya, EC, Nalubamba, KS, Hankanga, C and Namangala, B (2011) Prevalence of canine gastrointestinal helminths in urban Lusaka and rural Katete Districts of Zambia. Preventive Veterinary Medicine 100, 252255.CrossRefGoogle ScholarPubMed
Campos Júnior, D, Elefant, GR, Silva, EOM, Gandolfi, L, Jacob, CMA, Tofeti, A and Pratesi, R (2003) Freqüência de soropositividade para antígenos de Toxocara canis em crianças de classes sociais diferentes. Revista da Sociedade Brasileira de Medicina Tropical 36, 509513.CrossRefGoogle Scholar
Chen, J, Xu, M, Zhou, D, Song, H, Wang, C and Zhu, X (2012) Canine and feline parasitic zoonoses in China. Parasites and Vectors 5, 152.CrossRefGoogle ScholarPubMed
Clarín Newspaper (2011) La migración hacia los grandes centros urbanos. Clarín, October 28. Available at https://www.clarin.com/sociedad/Argentina-gente-vive-ciudades_0_B1pzsUo3wQl.htmlGoogle Scholar
Cortez-Aguirre, GR, Jiménez-Coello, M, Gutiérrez-Blanco, E and Ortega-Pacheco, A (2018) Stray dog population in a city of Southern Mexico and its impact on the contamination of public areas. Veterinary Medicine International 2018, 2381583.CrossRefGoogle Scholar
Dantas-Torres, F and Otranto, D (2014) Dogs, cats, parasites, and humans in Brazil: opening the black box. Parasites and Vectors 7, 22.CrossRefGoogle ScholarPubMed
De Francesco, MV, Zunino, MG, Kuruc, J and Schweigmann, N (1997) Estimación del tamaño de la población canina que visita los espacios verdes porteños. Poster Session Presented at 18th Arg. Meet. Ecology, Buenos Aires, Argentina.Google Scholar
Epe, C (2006) Current and future options for the prevention and treatment of canids. pp. 239252 in Holland, CV and Smith, HV (Eds) Toxocara: the enigmatic parasite. Wallingford, CABI Publishing.Google Scholar
Ferreira, A, Alho, AM, Otero, D, Gomes, L, Nijsse, R, Overgaauw, PAM and Madeira De Carvalho, L (2017) Urban dog parks as sources of canine parasites: contamination rates and pet owner behaviours in Lisbon, Portugal. Journal of Environmental and Public Health 2017, 5984086.CrossRefGoogle ScholarPubMed
Fontanarrosa, MF, Vezzani, D, Basabe, J and Eiras, DF (2006) An epidemiological study of gastrointestinal parasites of dogs from Southern Greater Buenos Aires (Argentina): age, gender, breed, mixed infections, and seasonal and spatial patterns. Veterinary Parasitology 136, 283295.CrossRefGoogle Scholar
Fuerza Aérea Argentina (1992) Estadísticas Climatológicas 1981–1990, Ser. B6–37.Google Scholar
Gillespie, S and Bradbury, RS (2017) A survey of intestinal parasites of domestic dogs in Central Queensland. Tropical Medicine and Infectious Disease 2, 60.CrossRefGoogle ScholarPubMed
Government of the City of Buenos Aires (GCBA), General Direction of Statistics and Census (2010a) Población total por sexo, superficie y densidad de población según comuna y barrio. Ciudad de Buenos Aires. Año 2010. Available at https://www.estadisticaciudad.gob.ar/eyc/?p=28011Google Scholar
Government of the City of Buenos Aires (GCBA), General Direction of Statistics and Census (2010b) Mapa de Comunas y barrios de la Ciudad de Buenos Aires. Available at https://www.estadisticaciudad.gob.ar/eyc/?p=52356Google Scholar
Government of the City of Buenos Aires (GCBA), General Direction of Statistics and Census (2013) El sector medio en la Ciudad de Buenos Aires: una aproximación a partir de la estratificación de la población porteña según ingresos. Available at https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2015/04/ir_2013_544.pdfGoogle Scholar
Government of the City of Buenos Aires (GCBA), General Direction of Statistics and Census (2015) Censo 2010. Situación y caracterización de los asentamientos precarios en la Ciudad de Buenos Aires. Año 2010. Available at https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2015/05/ir_2015_856.pdfGoogle Scholar
Government of the City of Buenos Aires (GCBA), General Direction of Statistics and Census (2016) Informe módulo de Tenencia responsable y sanidad de perros y gatos, Encuesta Anual de Hogares 2014. Available at https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2016/02/eah_2014_tenencia_responsable_perros_gatos.pdfGoogle Scholar
Government of the City of Buenos Aires (GCBA), Ministry of Planning and Public Works (2006) Documento Plan Urbano Ambiental. Available at http://www.buenosaires.gob.ar/areas/planeamiento_obras/copua/pua_junio2006.pdf?menu_id=19176Google Scholar
Hinney, B, Gottwald, M, Moser, J, Reicher, B, Schäfer, BJ, Schaper, R, Joachim, A and Künzel, F (2017) Examination of anonymous canine faecal samples provides data on endoparasite prevalence rates in dogs for comparative studies. Veterinary Parasitology 245, 106115.CrossRefGoogle ScholarPubMed
Idika, IK, Onuorah, EC, Obi, CF, Umeakuana, PU, Nwosu, CO, Onah, DN and Chiejina, SN (2017) Prevalence of gastrointestinal helminth infections of dog in Enugu State, South Eastern Nigeria. Parasite Epidemiology and Control 2, 97104.CrossRefGoogle ScholarPubMed
Katagiri, S and Oliveira-Sequeira, TCG (2008) Prevalence of dog intestinal parasites and risk perception of zoonotic infection by dog owners in Sao Paulo State, Brazil. Zoonoses and Public Health 55, 406413.CrossRefGoogle ScholarPubMed
Kitala, P, McDermott, J, Kyule, M, Gathuma, J, Perry, B and Wandeler, A (2001) Dog ecology and demography information to support the planning of rabies control in Machakos District, Kenya. Acta Tropica 78, 217230.CrossRefGoogle ScholarPubMed
La Sala, LF, Leiboff, A, Burgos, JM and Costamagna, SR (2015) Spatial distribution of canine zoonotic enteroparasites in Bahía Blanca, Argentina. Revista Argentina de Microbiología 47, 1724.CrossRefGoogle ScholarPubMed
Lee, ACY, Schantz, PM, Kazacos, KR, Montgomery, SP and Bowman, DD (2010) Epidemiologic and zoonotic aspects of ascarid infections in dogs and cats. Trends in Parasitology 26, 155161.CrossRefGoogle ScholarPubMed
López, MA, Martin, G, Chamorro, MC and Alonso, JM (2005) Toxocariosis en niños de una región Subtropical. Medicina 65, 226230.Google Scholar
Martin, UO and Demonte, MA (2008) Urban contamination with zoonotic parasites in the central region of Argentina. Medicina 68, 363366.Google ScholarPubMed
McCarthy, J and Moore, TA (2000) Emerging helminth zoonoses. International Journal for Parasitology 30, 13511359.CrossRefGoogle ScholarPubMed
Mircean, V, Dumitrache, MO, Mircean, M, Colosi, HA and Györke, A (2017) Prevalence and risk factors associated with endoparasitic infection in dogs from Transylvania (Romania): a retrospective study. Veterinary Parasitology 243, 157161.CrossRefGoogle ScholarPubMed
Mizgajska-Wiktor, H and Uga, S (2006) Exposure and environmental contamination. pp. 211227 in Holland, CV and Smith, HV (Eds) Toxocara: the enigmatic parasite. Wallingford, CABI Publishing.Google Scholar
Morgan, ER, Azam, D and Pegler, K (2013) Quantifying sources of environmental contamination with Toxocara spp. eggs. Veterinary Parasitology 193, 390397.CrossRefGoogle ScholarPubMed
National Meteorological Service (2014) Boletines climáticos. Available at http://www.smn.gov.ar/?mod=clima&id=30&provincia=Capital%20Federal&ciudad=Buenos%20AiresGoogle Scholar
Nijsse, R, Ploeger, HW, Wagenaar, JA and Mughini-Gras, L (2015) Toxocara canis in household dogs: prevalence, risk factors and owners’ attitude towards deworming. Parasitology Research 114, 561569.CrossRefGoogle ScholarPubMed
Núez, CR, Martínez, GDM, Bustamante, LP, Galván, MMC and Durán, NR (2011) Presence and viability of Toxocara spp in soils of public parks, gardens of houses and feces from dogs in Nezahualcóyotl, Mexico. Revista Cientifica de La Facultad de Ciencias Veterinarias de la Universidad Del Zulia 21, 195201.Google Scholar
Oliveira-Arbex, AP, David, EB, Oliveira-Sequeira, TCG, Katagiri, S, Coradi, ST and Guimarães, S (2016) Molecular identification of Ancylostoma species from dogs and an assessment of zoonotic risk in low-income households, São Paulo State, Brazil. Journal of Helminthology 91, 1419.CrossRefGoogle Scholar
Otero, D, Alho, AM, Nijsse, R, Roelfsema, J, Overgaauw, P and Madeira de Carvalho, L (2018) Environmental contamination with Toxocara spp. eggs in public parks and playground sandpits of Greater Lisbon, Portugal. Journal of Infection and Public Health 11, 9498.CrossRefGoogle ScholarPubMed
Otranto, D, Dantas-Torres, F, Mihalca, AD, Traub, RJ, Lappin, M and Baneth, G (2017) Zoonotic parasites of sheltered and stray dogs in the era of the global economic and political crisis. Trends in Parasitology 33, 813825.CrossRefGoogle ScholarPubMed
Overgaauw, PAM and Nederland, V (1997) Aspects of Toxocara epidemiology: toxocarosis in dogs and cats. Critical Reviews in Microbiology 23, 233251.CrossRefGoogle ScholarPubMed
Pinto, C, Pairo, P, Vaccaro, A, Turuelo, N, Sotelo, I, O'Donohoe, A, Banús, MC and Rubel, D (2012) Evaluación preliminar de la población canina que visita los espacios verdes porteños y sus patrones de uso. Abstract Book 25th Arg. Meet. Ecology, 28. Available at http://www.inedes.unlu.edu.ar/sites/www.inedes.unlu.edu.ar/files/site/Resumenes%20breves%20RAE%202012.pdfGoogle Scholar
Poglayen, G and Marchesi, B (2006) Urban faecal pollution and parasitic risk: the Italian skill. Parassitologia 48, 117119.Google ScholarPubMed
R Core Team (2019) R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at http://www.R-project.orgGoogle Scholar
Rinaldi, L, Biggeri, A, Carbone, S, Musella, V, Catelan, D, Veneziano, V and Cringoli, G (2006) Canine faecal contamination and parasitic risk in the city of Naples (southern Italy). BMC Veterinary Research 2, 29.CrossRefGoogle Scholar
Rivero, MR, De Angelo, C, Nuñez, P, Salas, M, Motta, CE, Chiaretta, A, Salomon, OD and Liang, S (2017) Environmental and socio-demographic individual, family and neighborhood factors associated with children intestinal parasitoses at Iguazú, in the subtropical northern border of Argentina. PLoS Neglected Tropical Diseases 11, 126.CrossRefGoogle ScholarPubMed
Rubel, D and Carbajo, A (2019) Dogs in public spaces of Buenos Aires, Argentina: exploring patterns of the abundance of dogs, the canine faecal contamination, the behaviour of people with dogs, and its relationships with demographic/economic variables. Preventive Veterinary Medicine 170, 104713.CrossRefGoogle Scholar
Rubel, D and Wisnivesky, C (2005) Magnitude and distribution of canine fecal contamination and helminth eggs in two areas of different urban structure, Greater Buenos Aires, Argentina. Veterinary Parasitology 133, 339347.CrossRefGoogle ScholarPubMed
Rubel, D and Wisnivesky, C (2010) Dog fouling and helminth contamination in parks and sidewalks of Buenos Aires City, 1991–2006. Medicina (Buenos Aires) 70, 355363.Google Scholar
Rubel, D, Zunino, G, Santillán, G and Wisnivesky, C (2003) Epidemiology of Toxocara canis in the dog population from two areas of different socioeconomic status, Greater Buenos Aires, Argentina. Veterinary Parasitology 115, 275286.CrossRefGoogle ScholarPubMed
Rubel, D, Nemirovsky, SI, Gorosito, I, Servián, A and Garbossa, G (2019) Factors affecting canine fecal and parasitic contamination of public green spaces of Buenos Aires city, Argentina, and visitors’ perception of such contamination. Journal of Urban Ecology 5, 111.CrossRefGoogle Scholar
Savilla, TM, Joy, JE, May, JD and Somerville, CC (2011) Prevalence of dog intestinal nematode parasites in south central West Virginia, USA. Veterinary Parasitology 178, 115120.CrossRefGoogle ScholarPubMed
Schlesselman, JJ (1982) Case-control studies: design, conduct, analysis. 1st edn. 368 pp. New York, Oxford University Press.Google Scholar
Smith, AF, Semeniuk, CAD, Kutz, SJ and Massolo, A (2014) Dog-walking behaviours affect gastrointestinal parasitism in park-attending dogs. Parasites and Vectors 7, 429.CrossRefGoogle ScholarPubMed
Stone, WM and Girardeau, M (1968) Transmammary passage of Ancylostoma caninum larvae in dogs. Journal of Parasitology 54, 426429.CrossRefGoogle ScholarPubMed
Tadesse, M, Ayana, D, Kumsa, B and Fromsa, A (2020) Zoonotic helminth parasites of dog in Bishoftu Town, central Ethiopia: prevalence, dog owners’ knowledge and control practice. Ethiopian Veterinary Journal 24, 93115.CrossRefGoogle Scholar
Traub, RJ, Robertson, ID, Irwin, PJ, Mencke, N and Thompson, RC (2005) Canine gastrointestinal parasitic zoonoses in India. Trends in Parasitology 21, 4248.CrossRefGoogle ScholarPubMed
Traversa, D (2012) Pet roundworms and hookworms: a continuing need for global worming. Parasites and Vectors 5, 91.CrossRefGoogle ScholarPubMed
Traversa, D, Di Cesare, A, Simonato, G, Cassini, R, Merola, C, Diakou, A, Lénaïg, H, Beugnetd, F and Frangipane di Regalbono, A (2017) Zoonotic intestinal parasites and vector-borne pathogens in Italian shelter and kennel dogs. Comparative Immunology, Microbiology and Infectious Diseases 51, 6975.CrossRefGoogle ScholarPubMed
Uga, S (1993) Prevalence of Toxocara eggs and number of faecal deposits from dogs and cats in sandpits of public parks in Japan. Journal of Helminthology 67, 7882.CrossRefGoogle ScholarPubMed
Veneziano, V, Rinaldi, L, Carbone, S, Biggeri, A and Cringoli, G (2006) Geographical information systems and canine fecal contamination: the experience in the city of Naples (southern Italy). Parassitologia 48, 125128.Google Scholar
Wang, A, Ruch-Gallie, R, Scorza, V, Lin, P and Lappin, MR (2012) Prevalence of Giardia and Cryptosporidium species in dog park attending dogs compared to non-dog park attending dogs in one region of Colorado. Veterinary Parasitology 184, 335340.CrossRefGoogle ScholarPubMed
Zajac, A and Conboy, G (2012) Veterinary clinical parasitology. 8th edn. 368 pp. New Jersey, Wiley-Blackwell.Google Scholar