Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T19:44:49.613Z Has data issue: false hasContentIssue false

Hippocampal sclerosis induced in mice by a Taenia crassiceps metacestode factor

Published online by Cambridge University Press:  23 August 2018

N. Zepeda
Affiliation:
Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510 A.P. 70-242
N. Copitin
Affiliation:
Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510 A.P. 70-242
J.L. Chávez
Affiliation:
Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510 A.P. 70-242
F. García
Affiliation:
Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510 A.P. 70-242
F. Jaimes-Miranda
Affiliation:
Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510 A.P. 70-242
R. Rincón-Heredia
Affiliation:
Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510 A.P. 70-242
R. Paredes
Affiliation:
Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510 A.P. 70-242
S. Solano
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510
A.M. Fernández
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510
J.L. Molinari*
Affiliation:
Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510 A.P. 70-242
*
Author for correspondence: J.L. Molinari, E-mail: [email protected]

Abstract

An experimental Taenia crassiceps mouse model was used to assess the role of Taenia solium metacestode factor (Fac) in human neurocysticercosis. Intraperitoneal infection with T. crassiceps metacestodes or subcutaneous inoculation with a T. crassiceps metacestode factor (Fac) produced significant impairment of performance (learning) in the Barnes maze and induced bilateral hippocampal sclerosis in mice. Several staining techniques revealed important cell dispersion, extensive apoptosis and cell loss in the dentate gyrus, hilus and CA1-CA3 regions of both hippocampi, as well as intense deterioration of the adjacent cortex. An outstanding disruption of its histoarchitecture in the surrounding tissue of all these regions and apoptosis of the endothelial cells were also observed.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashwell, G (1957) Colorimetric analysis of sugars. In Colowick, SP and Kaplan, NO (eds), Methods in Enzymology. III. New York, NY: Academic Press, pp. 7384.Google Scholar
Barbe, MF et al. (2016) Memory deficits, gait ataxia and neuronal loss in the hippocampus and cerebellum in mice that are heterozygous for Pur-alpha. Neuroscience 337, 177190.Google Scholar
Bianchin, MM et al. (2015) Neuroimaging observations linking neurocysticercosis and mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Research 116, 3439.Google Scholar
Burgoyne, LA (1999) The mechanisms of pyknosis: hypercondensation and death. Experimental Cell Research 248, 214222.Google Scholar
Del Brutto, OH et al. (2016) Update on cysticercosis epileptogenic: the role of the hippocampus. Current Neurology Neuroscience Reports 16, 1.Google Scholar
Del Brutto, OH et al. (2017) The association between neurocysticercosis and hippocampal atrophy is related to age. American Tropical Medicine and Hygiene 96, 243248.Google Scholar
Everhard, ME, Kuhn, RE and Zelmer, DA (2004) Infrapopulation dynamics of a wild strain of Taenia crassiceps (WFU) (Cestoda Taeniidae) in BALB/cJ mice. Journal of Parasitology 90, 7984.Google Scholar
Forlenza, OV et al. (1997) Psychiatric manifestations of neurocysticercosis: a study of 38 patients from a neurology clinic in Brazil. Journal of Neurology, Neurosurgery and Psychiatry 62, 612616.Google Scholar
Griper, LB and Welburn, SC (2017) The causal relationship between neurocysticercosis infection and the development of epilepsy – a systematic review. Infectious Diseases of Poverty 6, 31.Google Scholar
Hadipour, M et al. (2018) Crocin improved amyloid beta induced long-term potentiation and memory deficits in the hippocampal CA1 neurons in freely moving rats. Synapse 72, e22026.Google Scholar
Jeniffer, VN, Udayakumar, S and Pushpalatha, K (2015) A clinical study to identify the possible etiology of complex partial seizures using magnetic resonance imaging brain findings and its implications on treatment. Journal of Pediatric Neurosciences 10, 350354.Google Scholar
Lurton, D et al. (1998) Granule cell dispersion is correlated with early epileptic events in human temporal lobe epilepsy. Journal of Neurological Science 154, 133136.Google Scholar
Miyasato, T et al. (1977) Electron microscopic observations on the penetration of Hymenolepis nana into the intestine of the mouse. Acta Medica Kinki University 2, 118.Google Scholar
Molinari, JL, Tato, P and Valles, Y (1987) Immunosuppression T-lymphocytes in swine, modulated by Cysticercus cellulosae. Revista Latinoamericana de Microbiología 29, 293300.Google Scholar
Molinari, JL et al. (1990) Depressive effect of a Taenia solium cysticercus factor on cultured human lymphocytes stimulated with phytohaemagglutinin. Annals of Tropical Medicine and Parasitology 84, 205208.Google Scholar
Molinari, JL et al. (1993) Effects of serum from neurocysticercosis patients on the structure and viability of Taenia solium oncospheres. Journal of Parasitology 79, 124127.Google Scholar
Paxinos, G and Franklin, KBJ (2013) The Mouse Brain in Stereotaxic Coordinates. 4th Edn. Oxford: Elsevier.Google Scholar
Rosenfeld, CS and Ferguson, SA (2014) Barnes maze testing strategies with small and large rodent models. Journal of Visualized Experiments 84, 5119451219.Google Scholar
Sloviter, RS (1994) The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Annals of Neurology 35, 640654.Google Scholar
Solano, S et al. (2015) A Taenia crassiceps metacestode factor enhance ovarian follicle atresia and oocyte degeneration in female mice. Journal of Helminthology 89, 4959.Google Scholar
Varghese, V et al. (2016) Cognitive dysfunction and its determinants in patients with neurocysticercosis. Indian Journal of Psychological Medicine 38, 142146.Google Scholar
Zepeda, N et al. (2010) Decrease of peritoneal inflammatory CD4+, CD8+, CD19+ lymphocytes and apoptosis of eosinophils in a murine Taenia crassiceps infection Parasitology Research 127, 11291135.Google Scholar
Zepeda, N et al. (2011) Taenia crassiceps: a secretion substance of low molecular weight leads to disruption and apoptosis of seminiferous epithelium cells in male mice. Experimental Parasitology 128, 184191.Google Scholar
Zepeda, N et al. (2016) A Taenia crassiceps factor induces apoptosis of spleen CD4 + T cells and TGF-β and Foxp3 gene expression in mice. Journal of Helminthology 90, 223231.Google Scholar
Zepeda, N et al. (2017) Apoptosis of mouse hippocampal cells induced by Taenia crassiceps metacestode factor. Journal of Helminthology 91, 215221.Google Scholar