Hostname: page-component-f554764f5-nwwvg Total loading time: 0 Render date: 2025-04-16T06:57:14.515Z Has data issue: false hasContentIssue false

First detection of Psilotrema limosum in muskrat in East Asia and a description of Psilotrema elegans n. sp.

Published online by Cambridge University Press:  10 April 2025

K.A. Kalinina*
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, pr-t 100-letiya Vladivostoka 159a, Vladivostok 690022, Russia
Yu.V. Tatonova
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, pr-t 100-letiya Vladivostoka 159a, Vladivostok 690022, Russia
V.V. Besprozvannykh
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, pr-t 100-letiya Vladivostoka 159a, Vladivostok 690022, Russia
M.Yu. Shchelkanov
Affiliation:
G.P. Somov Research Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Selskaya St. 1, Vladivostok 690022, Russia Institute of Life Sciences and Biomedicine, Basic Department of Epidemiology, Microbiology and Parasitology School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
*
Corresponding author: K.A. Kalinina; Email: [email protected]

Abstract

The East Asian region has seen the first discovery of trematodes of the genus Psilotrema in the muskrat Ondatra zibethicus. When studying the morphology of the trematodes, two morphotypes were identified among individuals of Psilotrema spp., the differences between which at the morphological level are equivalent to those between species. The affiliation of one of these morphotypes with the bird parasite Psilotrema limosum was established based on partial sequences of genes coding for 28S ribosomal RNA, nad1, and cox1 mitochondrial DNA. Based on the analysis of these three markers, we classified individuals with this morphotype as P. limosum, despite some morphological features of worms infecting birds. At the same time, the worms with second morphotype had no interspecies differences based on the first two markers, while the cox1 gene confirmed the separation of these samples on a species level. These trematodes were described as a new species, Psilotrema elegans n. sp., based on both morphological and molecular data.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Achatz, TJ, Bennett, DM, Martens, JR, Sorensen, RE, Nelson, RG, Bates, KM, Serbina, EA and Tkach, VV (2021) Description and phylogenetic affinities of a new species of Neopsilotrema (Digenea: Psilostomidae) from lesser scaup, aythya affinis (anseriformes: anatidae). Journal of Parasitology 107, 566574.Google ScholarPubMed
Atopkin, DM (2011) Genetic characterization of the Psilotrema (Digenea: Psilostomatidae) genus by partial 28S ribosomal DNA sequences. Parasitology International 60, 541543.CrossRefGoogle ScholarPubMed
Bergmame, L, Huffman, J, Cole, R, Dayanandan, S, Tkach, VV and McLaughlin, JD (2011) Sphaeridiotrema globulus and Sphaeridiotrema pseudoglobulus (Digenea): Species differentiation based on mtDNA (barcode) and partial LSU-rDNA sequences. Journal of Parasitology 97, 11321136.CrossRefGoogle ScholarPubMed
Besprozvannykh, VV, Ermolenko, AV and Rozhkovan, KV (2011) Descriptions of digenean parasites from three snail species, Bithynia fuchsiana (Morelet), Parafossarulus striatulus Benson and Melanoides tuberculata Müller, in North Vietnam. Helminthologia 50, 190204.CrossRefGoogle Scholar
Bowles, J, Blair, D and McManus, PD (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165174.CrossRefGoogle ScholarPubMed
Cutmore, SC, Bennett, MB and Cribb, TH (2010) Staphylorchis cymatodes (Gorgoderidae: Anaporrhutinae) from carcharhiniform, orectolobiform and myliobatiform elasmobranchs of Australasia: Low host specificity, wide distribution and morphological plasticity. Parasitology International 59, 579586.CrossRefGoogle ScholarPubMed
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle ScholarPubMed
Grabda, J (1954) Les parasites internes du rat musque-Ondatra zibethica (L.) des environs de Bydgoszcz (Pologne). Acta Parasitologica Polonica 2, 1738.Google Scholar
Hildebrand, J, Adamczyk, M, Laskowski, Z and Zaleśny, G (2015) Host-dependent morphology of Isthmiophora melis (Schrank, 1788) Luhe, 1909 (Digenea, Echinostomatinae) – morphological variation vs. molecular stability. Parasites & Vectors 8, 481.CrossRefGoogle ScholarPubMed
Kalinina, KA, Tatonova, YV and Besprozvannykh, VV (2022) New species of Psilotrema and Sphaeridiotrema (Psilostomidae Odhner, 1913) in the east Asian region: Morphology of developmental stages and genetic data. Parasitology International 88, 102554.CrossRefGoogle ScholarPubMed
Matskasi, I (1974) The trematode fauna of rodents and insectivora mammalia in Hungary. Part 3. The occurrence of Psilotrema simillimum and Psilotrema spiculigerum equals Psilotrema marki new synonym in rodents. Parasitologia Hungarica 7, 99110.Google Scholar
Mazeika, V, Kontenytė, R and Paulauskas, A (2009) New data on the helminths of the muskrat (Ondatra zibethicus) in Lithuania Estonian. Journal of Ecology 58, 103111.Google Scholar
Presswell, B and Bennett, J (2020) Galactosomum otepotiense n. sp. (Trematoda: Heterophyidae) infecting four different species of fish-eating birds in New Zealand: Genetically identical but morphologically variable. Journal of Helminthology 94, e86.CrossRefGoogle Scholar
Morgan, JAT and Blair, D (1998) Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda). Parasitology 116, 289297.CrossRefGoogle ScholarPubMed
Ronquist, F and Huelsenbeck, JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Schuster, RK, Specht, P and Rieger, S (2021) On the helminth fauna of the muskrat (Ondatra zibethicus (Linnaeus, 1766)) in the Barnim District of Brandenburg State/Germany. Animals 11, 115.CrossRefGoogle ScholarPubMed
Schwelm, J, Kudlai, O, Smit, NJ, Selbach, C and Sures, B (2020) High parasite diversity in a neglected host: Larval trematodes of Bithynia tentaculata in Central Europe. Journal of Helminthology 94, 123.CrossRefGoogle Scholar
Sey, O (1966) Contributions to the knowledge of the internal parasites of muskrat (Ondatra zibethica L., 1776) living along the river Tisza. Tiscia 2, 8995.Google Scholar
Shumenko, PG and Tatonova, YV (2022) Assessing the population structure of trematode Metagonimus suifunensis using three mitochondrial markers. Parasitology Research 121, 915923.Google ScholarPubMed
Skryabin, KI (1947) Trematodes of Animals and Humans, vol. 1 Fundamentals of Trematodology: Monograph. Publishing House of the USSR Academy of Sciences (in Russian).Google Scholar
Tatonova, YV, Izrailskaia, AV and Besprozvannykh, VV (2020) Stephanoprora amurensis sp. nov., Echinochasmus milvi Yamaguti, 1939 and E. suifunensis Besprozvannykh, 1991 from the Russian southern Far East and their phylogenetic relationships within the Echinochasmidae Odhner 1910. Parasitology 147, 14691479.CrossRefGoogle Scholar
Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Tkach, V, Pawlowski, J and Mariaux, J (2000) Phylogenetic analysis of the suborder plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. International Journal for Parasitology 1, 8393.CrossRefGoogle Scholar
Tkach, VV (2001) Molecular phylogeny of the suborder Plagiorchiata and its position in the system of Digenea. In Interrelationships of Platyhelminthes. London: Taylor & Francis, 186193.Google Scholar
Tkach, VV, Kudlai, O and Kostadinova, A (2016) Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). International Journal for Parasitology 46, 171185.CrossRefGoogle ScholarPubMed
Tkach, VV, Timothy, D, Littlewood, J, Olson, PD, Kinsella, JM and Swiderski, Z (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology 56, 115.CrossRefGoogle ScholarPubMed
Truett, GE, Heege, P, Mynatt, RL, Truett, AA, Walker, JA and Warman, ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 5254.Google ScholarPubMed
Varenov, IP (1965) Psilotrema zibethica n. sp. from Ondatra zibethica. Scientific Notes of the Gorky State Pedagogical Institute 56, 68. (In Russian).Google Scholar
Xu, G, Zhu, P, Zhu, W, Ma, B, Li, X and Li, W (2020) Characterization of the complete mitochondrial genome of Notocotylus sp. (Trematoda, Notocotylidae) and its phylogenetic implications. Parasitology Research 4, 12911301.Google Scholar