Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T04:31:19.288Z Has data issue: false hasContentIssue false

Failure to demonstrate suppressor T cell activity in the lamina propria of Hymenolepis diminuta-infected rats

Published online by Cambridge University Press:  05 June 2009

C. Palmas
Affiliation:
Istituto di Patologia Sperimentale, Sezione di Parassitologia, Università di Cagliari, Via della Pineta 77, 09125 Cagliari, Italy
D. Wakelin
Affiliation:
MRC Experimental Parasitology Group, Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
G. Bortoletti
Affiliation:
Istituto di Patologia Sperimentale, Sezione di Parassitologia, Università di Cagliari, Via della Pineta 77, 09125 Cagliari, Italy
A. R. Ecca
Affiliation:
Istituto di Patologia Sperimentale, Sezione di Parassitologia, Università di Cagliari, Via della Pineta 77, 09125 Cagliari, Italy
F. Gabriele
Affiliation:
Istituto di Patologia Sperimentale, Sezione di Parassitologia, Università di Cagliari, Via della Pineta 77, 09125 Cagliari, Italy

Abstract

The aim of this study was to examine whether there was an increase of suppressor T cells, relative to helper T cells, in the intestinal lamina propria of Hymenolepis diminuta-infected rats, a condition which might allow the parasite to survive for the life-span of the host. Lamina propria cells were isolated by enzymatic procedure. All lymphocytes were passed over nylon wool columns in order to remove B cells; then the T cells were purified by a panning technique using monoclonal anti-T cell antibodies. Changes in the mitogen-stimulated synthesis of 1gM, IgG and IgA by normal peripheral blood indicator lymphocytes, as measured by sandwich ELISA, was used as an index of help and/or suppression. No significant suppressor T cell activity was observed in the cultures, either from control or infected intestine.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnaud-Battandier, F. (1982) Immunologic characteristics of isolated gut mucosal lymphoid cells. In: Recent Advances in Mucosal Immunity. (editors, Strober, W., Hanson, L. A., Sell, K. W.) Raven Press, New York, pp. 289299.Google Scholar
Befus, A. D., Pearce, F. L., Gauldie, J., Horsewood, P. & Bienenstock, J. (1982) Mucosal mast cells. I. Isolation and characteristics of rat intestinal mast cells. Journal of Immunology, 128, 24752480.CrossRefGoogle ScholarPubMed
Bienenstock, J. & Befus, A. D. (1980) Mucosal immunology. Immunology, 41, 249270.Google ScholarPubMed
Bortoletti, G., Gabriele, F. & Palmas, C. (1986) Effect of cortisone acetate on the immunological reactions of the rat against low level of Hymenolepis diminuta infection. Microbios Letters, 31, 119122.Google Scholar
Bortoletti, G., Gabriele, F. & Palmas, C. (1989) Kinetics of mast cells, eosinophils and phospholipase B activity in the spontaneous cure response of two strains of mice (rapid and slow responder) to the cestode Hymenolepis nana. Parasitology Research, 75, 465469.CrossRefGoogle Scholar
Bull, D. M. & Bookman, M. A. (1977) Isolation and functional characterization of human intestinal mucosal lymphoid cells. Journal of Clinical Investigation, 59, 966974.CrossRefGoogle ScholarPubMed
Davies, M. D. J. & Parrott, D. M. V. (1981) Preparation and purification of lymphocytes from the epithelium and lamina propria of murine small intestine. Gut, 22, 481488.CrossRefGoogle ScholarPubMed
Elson, C. O., Heck, J. A. & Strober, W. (1979) T cell regulation of murine IgA synthesis. Journal of Experimental Medicine, 149, 632643.CrossRefGoogle ScholarPubMed
Elson, C. O., Weiserbs, D. B., Ealdind, W. & Machelsky, E. (1983) T helper cell activity in intestinal lamina propria. Annals of the New York Academy of Sciences, 409, 230237.CrossRefGoogle ScholarPubMed
Gabriele, F., Ecca, A. R., Wakelin, D. & Palmas, C. (1986) Blast cell activity in mice infected with Hymenolepis nana, H. diminuta and Trichinella spiralis: uptake of 125IUdR in lymphoid tissues and gut. Journal of Helminthology, 60, 313318.CrossRefGoogle ScholarPubMed
Goldstein, A. (1964) Biostatistics. MacMillan, New York, pp. 5559.Google Scholar
Goodacre, R., Davison, R., Singal, D. & Bienenstock, J. (1979) Morphologic and functional characteristics of human intestinal lymphoid cells isolated by mechanical technique. Gastroenterology, 76, 300308.Google Scholar
Handwerger, B. S. & Schwartz, R. H. (1974) Separation of murine lymphoid cells using nylon wool columns. Recovery of the B cell enriched population. Transplantation, 18, 544.Google Scholar
Hopkins, C. H. (1980) Immunity and Hymenolepis diminuta. In: Biology of the Tapeworm Hymenolepis diminuta. Academic Press, pp. 551613.CrossRefGoogle Scholar
Julius, M. H., Simpson, E. & Herzenberg, L. A. (1973) A rapid method for the isolation of functional thymus-derived murine lymphocytes. European Journal of immunology, 3, 645649.Google Scholar
Lyscom, N. & Brueton, M. J. (1982) Intraepithelial, lamina propria and Peyer's patch lymphocytes of the rat small intestine: isolation and characterization in terms of immunoglobulin markers and receptors for monoclonal antibodies. immunology, 45, 775783.Google ScholarPubMed
Machnicka, N. (1985) Systemic immunosuppression of non-specific cell-mediated response in rats infected with Hymenolepis diminuta. Wiadomosci Parazytologiczne, 31, 545548.Google Scholar
Machnicka, B. & Choromansky, L. (1983) Immune response and immunodepression in Hymenolepis diminuta infection in rats. Zeitschrift für Parasitenkunde, 69, 239345.Google Scholar
Mitchell, G. F. (1991) Co-evolution of parasites and adaptive immune responses. In: Immunoparasitology Today (editors, Ash, C. & Gallegher, R. B.). Elsevier Trends Journals, Cambridge.Google Scholar
Mosmann, T. R. & Coffman, R. L. (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual Review of Immunology, 7, 1450–173.CrossRefGoogle ScholarPubMed
Palmas, C., Conchedda, M., Bortoletti, G. & Gabriele, F. (1985) In vitro cellular immune response in mice and rabbits immunized with Trichinella spiralis antigen. Bollettino dell'Istituto Sieroterapico Milanese, 64, 216221.Google ScholarPubMed
Palmas, C., Bortoletti, G., Conchedda, M. & Gabriele, F. (1986a) Immunological memory and lymphoblast-migration in mice infected with Hymenolepis nana. Zeitschrift für Parasitenkunde, 72, 397403.CrossRefGoogle ScholarPubMed
Palmas, C., Grencis, R. K. & Bortoletti, G. (1986b). Attività in vitro dei T-helper e T-suppressor isolati dalla lamina propria dell'intestino tenue di ratti infestati con Hymenolepis diminuta. Parassitologia, 28, 293294.Google Scholar
Palmas, C., Bortoletti, G. & Gabriele, F. (1987) A further investigation on cell-shutdown in the secondary lymphoid organs of mice with Hymenolepis nana. Microbios Letters, 36, 139142.Google Scholar
Read, C. P. (1967) Longevity of the tapeworm, Hymenolepis diminuta. Journal of Parasitology, 53, 10551056.Google Scholar
Rodbard, D. & Feldman, Y. (1978) Kinetics of two-site immunoradiometric (sandwich) assays. I. Mathematical models for simulation optimization and curve fitting. Immunochemistry, 15, 7176.Google Scholar
Seigel, F. P. & Siegel, M. (1977) Enhancement by irradiated T cells of human plasma cell production: dissection of helper and suppressor functions in vitro. Journal of Immunology, 118, 18721879.Google Scholar
Wakelin, D. (1984) Immunity to Parasites. E. Arnold, London.Google Scholar
Wakelin, D. & Wilson, M. N. (1979) T and B cells in the transfer of immunity against Trichinella spiralis in mice. immunology, 37, 103109.Google Scholar
Wysocki, L. J. & Sato, V. L. (1981) “Panning” for lymphocytes: method for cell selection. Proceedings of the National Academy of Sciences of the United States of America, 75, 28442851.CrossRefGoogle Scholar