Published online by Cambridge University Press: 05 June 2009
Thermal effects on the dynamics of infection with metacercariae of Diplostomum baeri and D. spathaceum were monitored between May and September, in a year-class of perch Perca fluviatilis, in an artificial lake receiving warm water discharges from a nuclear power station and in an unheated reference site, for a two year period. In the heated area the prevalence of infection of the retinal form, D. baeri, was always 100%, whereas in the unheated site there was an increase from 93% in May to 100% in June 1986. The relative density of D. baeri was found to increase gradually during the first summer in both areas, although the accumulation rate of metacercariae was significantly increased in the heated area. In August of the first year the relative density of D. baeri peaked in the heated area, whereas it continued to increase in the unheated control. However, in September of the following year, the relative densities were at the same level in both thermal regimes. A concomitant decline in the degree of overdispersion of metacercariae within the host population was observed in the heated area as the population density of metacercariae decreased, whereas the index of dispersion remained at the same level throughout the study in the unheated area. However, it was not possible to sample perch in the unheated area between October 1986 and May 1987 and changes in the parasite population could have occurred during this period. The prevalence and relative density of D. spathaceum, the lens form, was on the contrary low, especially in the unheated site where it was recorded only occasionally. The infection of D. baeri exhibited a convex pattern in both thermal regimes, although the peak infection was noticed earlier in the heated area. Regulation of the parasite infrapopulation may have been achieved by the combined effects of a decreased transmission rate of cercariae with increasing age of the host, the mortality of metacercariae as a natural termination of the life span and to selective predation of heavily infected hosts. However, regardless of an increased accumulation rate of metacercariae in the heated area, the relative densities of D. baeri became equal in both thermal regimes at the end of the study. The mortality rate of metacercariae in the heated area was therefore presumably increased as compared with the unheated reference site.