Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-08T23:29:14.192Z Has data issue: false hasContentIssue false

Epidemiology and diversity of gastrointestinal tract helminths of wild ruminants in sub-Saharan Africa: a review

Published online by Cambridge University Press:  03 June 2024

V. Phetla*
Affiliation:
Foundational Biodiversity Science, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
M. Chaisi
Affiliation:
Foundational Biodiversity Science, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort 0110, South Africa
M.P. Malatji
Affiliation:
School of Life Science, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
*
Corresponding author: V. Phetla; Email: [email protected]

Abstract

This review summarises studies on distribution, diversity, and prevalence of gastrointestinal helminth infections in wild ruminants in sub-Saharan Africa. The results showed that 109 gastrointestinal tract (GIT) helminth species or species complexes were recorded in 10 sub-Saharan African countries. South Africa reported the highest number of species because most studies were carried out in this country. Eighty-eight nematode species or species complexes were recorded from 30 wild ruminant species across eight countries. The genus Trichostrongylus recorded the highest number of species and utilised the highest number of wild ruminant species, and along with Haemonchus spp., was the most widely distributed geographically. Fifteen trematode species or species complexes were reported from seven countries. The genus Paramphistomum recorded the highest number of species, and Calicophoron calicophoron was the most commonly occurring species in sub-Saharan African countries and infected the highest number of hosts. Six cestode species or species complexes from one family were documented from 14 wild hosts in seven countries. Moniezia spp. were the most commonly distributed in terms of host range and geographically. Impala were infected by the highest number of nematodes, whilst Nyala were infected by the highest number of trematode species. Greater kudu and Impala harbored the largest number of cestodes. The prevalence amongst the three GIT helminths taxa ranged between 1.4% and 100% for nematodes, 0.8% and 100% for trematodes, and 1.4% and 50% for cestodes. There is still limited information on the distribution and diversity of GIT helminths in wild ruminants in most sub-Saharan African countries.

Type
Review Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abuessailla, AA, Ismail, AA and Agab, H (2013) The prevalence of gastrointestinal parasites in wild and domestic animals in Radom National Park; South Darfur state, Sudan. Assiut Veterinary Medical Journal 59, 138.Google Scholar
Abuessailla, AA, Ismail, AA and Agab, H (2014) Wildlife helminth risk in Radom National Park; South Darfur State, SudanAssiut Veterinary Medical Journal 60, 7386.Google Scholar
Anderson, IG (1983) The prevalence of helminths in impala (Aepyceros melampus) (Lichtenstein 1812) under game ranching conditions. South African Journal of Wildlife Research 13, 5570.Google Scholar
Anderson, IG (1992) Observations on the life-cycles and larval morphogenesis of, and transmission experiments with Cooperioides hamiltoni and Cooperioides hepaticae (Nematoda: Trichostrongyloidea) parasitic in impala, Aepyceros melampus. African Zoology 27, 81–8.CrossRefGoogle Scholar
Arksey, H and O’Malley, L (2005) Scoping studies: towards a methodological frameworkInternational Journal of Social Research Methodology 8, 1932.CrossRefGoogle Scholar
Atuman, YJ, Kudi, CA, Abdu, P and Abubakar, A (2019) Prevalence of parasites of wildlife in Yankari game reserve and Sumu wildlife park in Bauchi State, NigeriaSokoto Journal of Veterinary Sciences 17, 7079.CrossRefGoogle Scholar
Barone, CD, Wit, J, Hoberg, EP, Gilleard, JS and Zarlenga, DS (2020) Wild ruminants as reservoirs of domestic livestock gastrointestinal nematodesVeterinary Parasitology 279, 109041.CrossRefGoogle ScholarPubMed
Begon, M, Hazel, SM, Baxby, D, Bown, K, Cavanagh, R, Chantrey, J, Jones, T and Bennett, M (1999) Transmission dynamics of a zoonotic pathogen within and between wildlife host speciesProceedings of the Royal Society of London. Series B: Biological Sciences 266, 19391945.CrossRefGoogle ScholarPubMed
Beveridge, I, Spratt, DM and Durette-Desset, MC (2013) Order Strongylida (Railliet & Henry, 1913)Handbook of zoology. A natural history of the phyla of the animal kingdom, volume 2, 557612.Google Scholar
Bliss, DH (2009) The control of gastro-intestinal nematode parasites of hoofed wildlife in North America. Technical bulletin: Mid America Agriculture Research, Verona, WI, USA, 53593.Google Scholar
Body, G, Ferté, H, Gaillard, JM, Delorme, D, Klein, F and Gilot-Fromont, E (2011) Population density and phenotypic attributes influence the level of nematode parasitism in roe deerOecologia 167, 635646.CrossRefGoogle ScholarPubMed
Bogale, B, Chanie, M, Melaku, A, Fentahun, T and Berhanu, A (2014) Occurrence, intensity and parasite composition of gastrointestinal helminth parasites in Walia ibex (Capra walie) at Semien Mountains National Park, Natural World Heritage Site, Northern EthiopiaActa Parasitologica Globalis 5, 1925.Google Scholar
Boomker, J, Keep, ME, Flamand, JR and Horak, IG (1984) The helminths of various antelope species from Natal. Onderstepoort Journal of Veterinary Research 51, 253256.Google ScholarPubMed
Boomker, J, Keep, ME and Horak, IG (1987) Parasites of South African wildlife. I. Helminths of Bushbuck, Tragelaphus scriptus, and Grey duiker, Sylvicapra grimmia, from the Weza State Forest, Natal. The Onderstepoort Journal of Veterinary Research 54, 131134.Google ScholarPubMed
Boomker, J, Anthonissen, M and Horak, IG (1988) Parasites of South African wildlife. II. Helminths of kudu, Tragelaphus strepsiceros, from South West Africa/Namibia. Onderstepoort Journal of Veterinary Research 55, 231233.Google ScholarPubMed
Boomker, J, Horak, IG, Flamand, JR and Keep, ME (1989a) Parasites of South African wildlife. III. Helminths of Common reedbuck, Redunca arundinum, in Natal. Onderstepoort Journal of Veterinary Research 56, 5157.Google ScholarPubMed
Boomker, J, Horak, IG and de Vos, V (1989b) Parasites of South African wildlife. IV. Helminths of Kudu, Tragelaphus strepsiceros, in the Kruger National Park. Onderstepoort Journal of Veterinary Research, 56, 111121.Google ScholarPubMed
Boomker, J (1991) Parasites of South African wildlife. XI. Description of a new race of Cooperia rotundispiculum Gibbons and Khalil, 1980. Onderstepoort Journal of Veterinary Research 58, 271273.Google Scholar
Boomker, J, Horak, IG and Knight, MM (1991a) Parasites of South African wildlife. IX. Helminths of Kudu, Tragelaphus strepsiceros, in the Eastern Cape Province. Onderstepoort Journal of Veterinary Research 67, 3141.Google Scholar
Boomker, J, Horak, IG and Flamand, JR (1991b) Parasites of South African wildlife. X. Helminths of Red duikers, Cephalophus natalensis, in Natal. Onderstepoort Journal of Veterinary Research 58, 205209.Google ScholarPubMed
Boomker, J, Horak, IG and Flamand, JR (1991c) Parasites of South African wildlife. XII. Helminths of Nyala, Tragelaphus angasii, in Natal. Onderstepoort Journal of Veterinary Research 58, 275280.Google ScholarPubMed
Boomker, J, Horak, IG and Flamand, JR (1991d) Parasites of South African wildlife. VI. Helminths of Blue duikers, Cephalophus monticola, in Natal. Onderstepoort Journal of Veterinary Research 58, 1113.Google ScholarPubMed
Boomker, J, Booyse, DG, Watermeyer, R, De Villiers, IL, Horak, IG and Flamand, JR (1996) Parasites of South African wildlife. XIV. Helminths of nyalas (Tragelaphus angasii) in the Mkuzi Game Reserve, KwaZulu-Natal. Onderstepoort Journal of Veterinary Research 63, 265271.Google ScholarPubMed
Boomker, J, Horak, IG, Watermeyer, R and Booyse, DG (2000) Parasites of South African wildlife. IX. Helminths of some antelope species from Eastern and Western Cape ProvinceOnderstepoort Journal of Veterinary Research 67, 31- 41.Google Scholar
Boomker, J and Taylor, WA (2004) Parasites of South African wildlife. XVIII. Cooperia pigachei n. sp.(Nematoda: Cooperiidae) from the Mountain reedbuck, Redunca fulvorufula (Afzelius, 1815)Onderstepoort Journal of Veterinary Research 71, 171174.CrossRefGoogle Scholar
Borkovcova, M and Kopřiva, JJPR (2005) Parasitic helminths of reptiles (Reptilia) in south Moravia (Czech Republic)Parasitology Research 95, 7778.CrossRefGoogle ScholarPubMed
Brooks, DR and Hoberg, EP (2006) Systematics and emerging infectious diseases: from management to solutionJournal of Parasitology 92, 426429.CrossRefGoogle ScholarPubMed
Buddhachat, K, Sriuan, S, Nak-On, S and Chontananarth, T (2022) Differentiating paramphistome species in cattle using DNA barcoding coupled with high-resolution melting analysis (Bar-HRM)Parasitology Research 122, 769779.CrossRefGoogle Scholar
Budischak, SA, Jolles, AE and Ezenwa, VO (2012) Direct and indirect costs of co-infection in the wild: linking gastrointestinal parasite communities, host hematology, and immune function. International Journal for Parasitology: Parasites and Wildlife 1, 212.Google ScholarPubMed
Chapman, CA, Abernathy, K, Chapman, LJ, Downs, C, Effiom, EO, Gogarten, JF, Golooba, M, Kalbitzer, U, Lawes, MJ, Mekonnen, A, Omeja, P, Razafindratsima, O, Sheil, D, Tabor, GM, Tumwesigye, C and Sarkar, D (2022) The future of sub-Saharan Africa’s biodiversity in the face of climate and societal change. Frontiers in Ecology and Evolution 10, 118.CrossRefGoogle Scholar
Cilliers, M (2019A systematic review of helminth infections of tragelaphine antelopes in Africa. Masters dissertation. University of Pretoria, South Africa.Google Scholar
Demiaszkiewicz, AW, Pyziel, AM, Lachowicz, J and Filip-Hutsch, K (2020) Occurrence of tapeworms Moniezia benedeni (Moniez, 1879) in European bison Bison bonasus L. in Białowieża Primeval Forest. Annals of Parasitology 66, 943952.Google ScholarPubMed
Dobson, AP and Hudson, PJ (1986) Parasites, disease and the structure of ecological communitiesTrends in Ecology & Evolution 1, 1115.CrossRefGoogle ScholarPubMed
Durette-Desset, MC (1985) Trichostrongyloid nematodes and their vertebrate hosts: reconstruction of the phylogeny of a parasitic group. Advances in Parasitology 24, 239306.CrossRefGoogle ScholarPubMed
Durette-Desset, MC, Hugot, JP, Darlu, P and Chabaud, AG (1999) A cladistic analysis of the Trichostrongyloidea (Nematoda)International Journal for Parasitology 29, 10651086.CrossRefGoogle ScholarPubMed
Eduardo, SL (1980) Bilatorchis papillogenitalis ng, n. sp. (Paramphistomidae: Orthocoelinae), a parasite of the red lechwe (Kobus leche Gray, 1850) from Zambia. Systematic Parasitology 1, 141149.CrossRefGoogle Scholar
Eduardo, SL (1982) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. II. Revision of the genus Paramphistomum Fischoeder, 1901. Systematic Parasitology 4, 189238.Google Scholar
Eduardo, SL (1983) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. III. Revision of the genus Calicophoron Näsmark, 1937. Systematic Parasitology 5, 2579.Google Scholar
Eduardo, SL (1985) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. VII. Redescription of Leiperocotyle congolense (baer, 1936) Eduardo, 1980 and a new name, Leiperocotyle gretillati for Ceylonocotyle scoliocoelium var. benoiti Grétillat, 1966. Systematic Parasitology 7, 231238.CrossRefGoogle Scholar
Eduardo, SL (1986) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. VIII. The genera Stephanopharynx Fischoeder, 1901 and Balanorchis Fischoeder, 1901. Systematic parasitology 8, 5769.Google Scholar
Egbetade, A, Akinkuotu, O, Jayeola, O, Niniola, A, Emmanuel, N, Olugbogi, E and Onadeko, S (2014) Gastrointestinal helminths of resident wildlife at the Federal University of Agriculture Zoological Park, AbeokutaSokoto Journal of Veterinary Sciences 12, 2631.CrossRefGoogle Scholar
Eygelaar, D, Jori, F, Mokopasetso, M, Sibeko, KP, Collins, NE, Vorster, I, Troskie, M and Oosthuizen, MC (2015) Tick-borne haemoparasites in African buffalo (Syncerus caffer) from two wildlife areas in Northern Botswana. Parasites & Vectors 8, 111.CrossRefGoogle ScholarPubMed
Fagbemi, BO and Dipeolu, OO (1983) Moniezia infection in the dwarf breeds of small ruminants in Southern Nigeria. Veterinary Quarterly 5, 7580.CrossRefGoogle ScholarPubMed
Fuentes, N (2021) Ecology of South African large herbivores in a managed arid savanna: body mass, local distribution, and parasites. Doctoral dissertation. Durham University, England.Google Scholar
Gillespie, TR (2006) Noninvasive assessment of gastrointestinal parasite infections in free-ranging primatesInternational Journal of Primatology 27, 11291143.CrossRefGoogle Scholar
Goossens, E, Dorny, P, Boomker, J, Vercammen, F and Vercruysse, J (2005) A 12-month survey of the gastro-intestinal helminths of antelopes, gazelles and giraffids kept at two zoos in BelgiumVeterinary Parasitology 127, 303312.CrossRefGoogle ScholarPubMed
Góralska, K and Blaszkowska, J (2015) Parasites and fungi as risk factors for human and animal healthAnnals of Parasitology 61, 207220.Google ScholarPubMed
Gorsich, EE, Ezenwa, VO and Jolles, AE (2014) Nematode–coccidia parasite co-infections in African buffalo: epidemiology and associations with host condition and pregnancyInternational Journal for Parasitology: Parasites and Wildlife 3, 124134.Google ScholarPubMed
Gregory, RD (1997) Comparative studies of host-parasite communities. Host-parasite evolution: general principles and avian models. Oxford University Press. United Kingdom.Google Scholar
Grenfell, BT (1992) Parasitism and the dynamics of ungulate grazing systemsThe American Naturalist 139, 907929.CrossRefGoogle Scholar
Hahn, LW, Ritchie, MD and Moore, JH (2003) Multifactor dimensionality reduction software for detecting gene–gene, and gene–environment interactionsBioinformatics 19, 376382.CrossRefGoogle ScholarPubMed
Halton, DW (2004) Microscopy and the helminth parasite. Micron 35, 361–90.CrossRefGoogle ScholarPubMed
Halvarsson, P, Baltrušis, P, Kjellander, P and Höglund, J (2022) Parasitic strongyle nemabiome communities in wild ruminants in SwedenParasites & Vectors 15, 115.CrossRefGoogle ScholarPubMed
Harvell, CD, Mitchell, CE, Ward, JR, Altizer, S, Dobson, AP, Ostfeld, RS and Samuel, MD (2002) Climate warming and disease risks for terrestrial and marine biotaScience 296, 21582162.CrossRefGoogle ScholarPubMed
Hoberg, EP, Kocan, AA and Rickard, LG (2001) Gastrointestinal strongyles in wild ruminantsParasitic Diseases of Wild Mammals 1, 193227.CrossRefGoogle Scholar
Hodda, M (2022) Phylum Nematoda: a classification, catalogue and index of valid genera, with a census of valid species. Zootaxa 5114, 1289.CrossRefGoogle ScholarPubMed
Holmes, JC (1995) Population regulation: a dynamic complex of interactionsWildlife Research 22, 1119.CrossRefGoogle Scholar
Hosseinnezhad, H, Sharifdini, M, Ashrafi, K, Roushan, ZA, Mirjalali, H and Rahmati, B (2021) Trichostrongyloid nematodes in ruminants of northern Iran: prevalence and molecular analysisBMC Veterinary Research 17, 112.CrossRefGoogle ScholarPubMed
Hudson, PJ, Dobson, AP and Newborn, D (1998) Prevention of population cycles by parasite removalScience 282, 22562258.CrossRefGoogle ScholarPubMed
Ikeuchi, A, Kondoh, D, Halajian, A and Ichikawa-Seki, M (2022) Morphological and molecular characterization of Calicophoron raja (Näsmark, 1937) collected from wild Bovidae in South AfricaInternational Journal for Parasitology: Parasites and Wildlife 19, 3843.Google ScholarPubMed
Jolles, AE, Ezenwa, VO, Etienne, RS, Turner, WC and Olff, H (2008) Interactions between macroparasites and microparasites drive infection patterns in free‐ranging African buffalo. Ecology 89, 22392250.CrossRefGoogle ScholarPubMed
Junge, RE and Louis, EE (2005) Biomedical evaluation of two sympatric lemur species (Propithecus verreauxi deckeni and Eulemur fulvus rufus) in Tsiombokibo Classified Forest, Madagascar. Journal of Zoo and Wildlife Medicine 36, 581589.CrossRefGoogle ScholarPubMed
Junker, K, Horak, IG and Penzhorn, B (2015) History and development of research on wildlife parasites in southern Africa, with emphasis on terrestrial mammals, especially ungulatesInternational Journal for Parasitology: Parasites and Wildlife 4, 5070.Google ScholarPubMed
Karere, GM and Munene, E (2002) Some gastro-intestinal tract parasites in wild De Brazza’s monkeys (Cercopithecus neglectus) in KenyaVeterinary Parasitology 110, 153157.CrossRefGoogle Scholar
Kumar, S and Kaur, H (2023) Molecular characterization of Moniezia denticulata (Rudolphi, 1810) and its distinction from M. expansa infecting sheep and goats raised in the north and north-western regions of India. Parasitology 150, 831841.CrossRefGoogle Scholar
Laurenson, K, Sillero-Zubiri, C, Thompson, H, Shiferaw, F, Thirgood, S and Malcolm, J (1998) Disease as a threat to endangered species: Ethiopian wolves, domestic dogs and canine pathogens. Animal Conservation Forum 1, 273280. Cambridge University Press.CrossRefGoogle Scholar
Lustigman, S, Geldhof, P, Grant, WN, Osei-Atweneboana, MY, Sripa, B and Basanez, MG (2012) A research agenda for helminth diseases of humans: basic research and enabling technologies to support control and elimination of helminthiasesPLoS Neglected Tropical Diseases 6, 1445.CrossRefGoogle ScholarPubMed
MacDonald, AS, Araujo, MI and Pearce, EJ (2002) Immunology of parasitic helminth infections. Infection and Immunity 70, 427433.CrossRefGoogle ScholarPubMed
Mampang, RT, Auxtero, KCA, Caldito, CJC, Abanilla, JM, Santos, GAG and Caipang, CMA (2023) DNA barcoding and its applications: a review. Uttar Pradesh Journal of Zoology 44, 6978.CrossRefGoogle Scholar
Mariaux, J, Tkach, VV, Vasileva, GP, Waeschenbach, A, Beveridge, I, Dimitrova, YD, Haukisalmi, V, Greiman, SE, Littlewood, DTJ, Makarikov, AA, Phillips, AJ, Razafiarisolo, T, Widmer, V, and Georgiev, BB (2017) Cyclophyllidea van Beneden in Braun, 1900. University of North Dakota. Department of Biology 32, 78148.Google Scholar
Mas-Coma, S, Valero, MA and Bargues, MD (2008) Effects of climate change on animal and zoonotic helminthiasesRevue Scientifique et Technique 27, 443–57.CrossRefGoogle ScholarPubMed
Meurens, F, Dunoyer, C, Fourichon, C, Gerdts, V, Haddad, N, Kortekaas, J, Lewandowska, M, Monchatre-Leroy, E, Summerfield, A, Schreur, PJW and van der Poel, WH (2021) Animal board invited review: risks of zoonotic disease emergence at the interface of wildlife and livestock systemsThe International Journal of Animal Biosciences 15, 100241.CrossRefGoogle ScholarPubMed
Mijele, D, Iwaki, T, Chiyo, PI, Otiende, M, Obanda, V, Rossi, L, Soriguer, R and Angelone-Alasaad, S (2016) Influence of massive and long distance migration on parasite epidemiology: lessons from the great wildebeest migration. EcoHealth 13, 708–19.CrossRefGoogle ScholarPubMed
Modabbernia, G, Meshgi, B and Eslami, A (2021) Diversity and burden of helminthiasis in wild ruminants in IranJournal of Parasitic Diseases 45, 394399.CrossRefGoogle ScholarPubMed
Morner, T (2002) Health monitoring and conservation of wildlife in Sweden and Northern Europe. Annals of the New York Academic Sciences 969, 3438.CrossRefGoogle ScholarPubMed
Morgan, ER, Shaikenov, B, Torgerson, PR, Medley, GF and Milner-Gulland, EJ (2005) Helminths of saiga antelope in Kazakhstan: implications for conservation and livestock productionJournal of Wildlife Diseases 41, 149162.CrossRefGoogle ScholarPubMed
Morgan, ER and van Dijk, J (2012) Climate and the epidemiology of gastrointestinal nematode infections of sheep in EuropeVeterinary Parasitology 189, 814.CrossRefGoogle ScholarPubMed
Mosala, PP (2017) Gastrointestinal parasites infecting ungulates, felids and avian species at National Zoological Gardens of South Africa. Doctoral dissertation. North-West University, South Africa.Google Scholar
Moudgil, AD and Singla, LD (2013) Role of neglected wildlife disease ecology in emergence and resurgence of parasitic diseasesTrends in Parasitology Research 2, 1823.Google Scholar
Müller, T, Hassel, R, Jago, M, Khaiseb, S, van der Westhuizen, J, Vos, A, Calvelage, S, Fischer, S, Marston, DA, Fooks, AR and Höper, D (2022) Rabies in kudu: revisited. Advances in Virus Research 112, 115173.CrossRefGoogle ScholarPubMed
Munn, Z, Peters, MD, Stern, C, Tufanaru, C, McArthur, A and Aromataris, E (2018) Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approachBMC Medical Research Methodology 18, 17.CrossRefGoogle ScholarPubMed
Muriuki, SMK, Murugu, RK, Munene, E, Karere, GM and Chai, DC (1998) Some gastro-intestinal parasites of zoonotic (public health) importance are commonly observed in old-world non-human primates in KenyaActa Tropica 71, 7382.CrossRefGoogle ScholarPubMed
Nagarajan, G, Thirumaran, SMK, Pachaiyappan, K, Thirumurugan, P, Rajapandai, S, Rajendiran, AS, Velusamy, R, Vannish, MR and Kanagarajadurai, K (2022) First report on molecular identification of Moniezia expansa in sheep from Mannavanur, Palani Hills, Tamil Nadu, India. Acta Parasitologica 67, 16261633.CrossRefGoogle ScholarPubMed
Nalubamba, KS, Bwalya, EC, Mudenda, NB, Munangandu, HM, Munyeme, M and Squarre, D (2015) Prevalence and burden of gastrointestinal helminths in wild and domestic guineafowls (Numida meleagris) in the Southern Province of ZambiaAsian Pacific Journal of Tropical Biomedicine 5, 663670.CrossRefGoogle Scholar
Nath, S, Das, G, Dixit, AK, Agrawal, V, Singh, AK, Kumar, S and Katuri, RN (2016) Epidemiological studies on gastrointestinal parasites of buffaloes in seven agro-climatic zones of Madhya Pradesh, India. Buffalo Bulletin 35, 355364.Google Scholar
Ogunji, FO, Akinboade, OA, Dipeolu, OO, Ayeni, J and Okaeme, A (1984) The prevalence of gastro-intestinal parasites and bacteria in the game scouts at the Kainji Lake National Park of NigeriaInternational Journal of Zoonoses 11, 119122.Google ScholarPubMed
Ohtori, M, Aoki, M and Itagaki, T (2015) Sequence differences in the internal transcribed spacer 1 and 5.8S ribosomal RNA among three Moniezia species isolated from ruminants in Japan. Journal of Veterinary Medical Science 77, 105107.CrossRefGoogle ScholarPubMed
Omonona, AO Ademola, IO and Ayansola, VI (2019) Prevalence of gastrointestinal parasites of Walter’s duiker (Philantomba walteri) in Ondo State, NigeriaAfrican Journal of Biomedical Research 22, 7378.Google Scholar
Opara, MN, Osuji, CT and Opara, JA (2010) Gastrointestinal parasitism in captive animals at the zoological garden, Nekede Owerri, Southeast NigeriaOstrich 2, 2128.Google Scholar
O’Connell, MJ, Nasirwa, O, Carter, M, Farmer, KH, Appleton, M, Arinaitwe, J, Bhanderi, P, Chimwaza, G, Copsey, J, Dodoo, J and Duthie, A (2019) Capacity building for conservation: problems and potential solutions for sub-Saharan AfricaOryx 53, 273283.CrossRefGoogle Scholar
Oyeleke, SB and Edungbola, OJ (2001) Prevalence of gastro-intestimal helminths of wild animals in Kainji Lake National Park and Federal College of wildlife management, New-Bussa, Niger state, NigeriaNigerian Journal of Parasitology 22, 129136.Google Scholar
Page, LK (2013) Parasites and the conservation of small populations: the case of Baylisascaris procyonisInternational Journal for Parasitology: Parasites and Wildlife 2, 203210.Google Scholar
Penzhorn, B (2000) Coccidian oocyst and nematode egg counts of free-ranging African buffalo (Syncerus caffer) in the Kruger National Park, South Africa: research communicationJournal of the South African Veterinary Association 71, 106108.CrossRefGoogle Scholar
Pfukenyi, DM, Mukaratirwa, S, Willingham, AI and Monrad, J (2005) Epidemiological studies of amphistome infections in cattle in the highveld and lowveld communal grazing areas of Zimbabwe. Onderstepoort Journal of Veterinary Research 72, 6786.CrossRefGoogle ScholarPubMed
Pfukenyi, DM and Mukaratirwa, S (2018) Amphistome infections in domestic and wild ruminants in East and Southern Africa: a review. Onderstepoort Journal of Veterinary Research 85, 113.CrossRefGoogle Scholar
Rehman, A and Abidi, SMA (2022) Health and helminths: revisiting the paradigm of host-parasite relationship. Biodiversity, 381397. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Reinecke, RK, Krecek, RC and Parsons, IR (1988) Helminth parasites from tsessebes at Nylsvley Nature Reserve, TransvaalSouth African Journal of Wildlife Research-24-month delayed open access 18, 7377.Google Scholar
Rose, H, Hoar, B, Kutz, SJ and Morgan, ER (2014) Exploiting parallels between livestock and wildlife: predicting the impact of climate change on gastrointestinal nematodes in ruminantsInternational Journal for Parasitology: Parasites and Wildlife 3, 209219.Google ScholarPubMed
Saha, SS, Bhowmik, DR and Chowdhury, MMR (2013) Prevalence of gastrointestinal helminthes in buffaloes in Barisal district of Bangladesh. Bangladesh Journal of Veterinary Medicine 11, 131135.CrossRefGoogle Scholar
Santos, LL, Salgado, JA, Drummond, MG, Bastianetto, E, Santos, CP, Brasil, BS, Taconeli, CA and Oliveira, DA (2019) Molecular method for the semiquantitative identification of gastrointestinal nematodes in domestic ruminantsParasitology Research 119, 529543.CrossRefGoogle ScholarPubMed
Senyael, E, Kuya, S, Eblate, E, Katale, Z and Keyyu, J (2013) Prevalence and spectrum of helminths in free-ranging African buffaloes (Syncerus caffer) in wildlife protected areas, TanzaniaJournal of Coastal Life Medicine 1, 145150.Google Scholar
Sepulveda, MS and Kinsella, JM (2013) Helminth collection and identification from wildlifeJournal of Visualized Experiments 82, 51000.Google Scholar
Sibula, MS, Nyagura, I, Malatji, MP and Mukaratirwa, S (2024) Prevalence and geographical distribution of amphistomes of African wild ruminants: a scoping review. International Journal of Parasitology: Parasites and Wildlife 23, 100906.Google ScholarPubMed
Singh, P, Gupta, MP, Singla, LD, Singh, N and Sharma, DR (2006) Prevalence and chemotherapy of gastrointestinal helminthic infections in wild carnivores in Mahendra Choudhury Zoological Park, PunjabJournal of Veterinary Parasitology 20, 1723.Google Scholar
Slifko, TR, Smith, HV and Rose, JB (2000) Emerging parasite zoonoses associated with water and foodInternational Journal for Parasitology 30, 13791393.CrossRefGoogle ScholarPubMed
Szewc, M, De Waal, T and Zintl, A (2021) Biological methods for the control of gastrointestinal nematodesThe Veterinary Journal 268, 105602.CrossRefGoogle ScholarPubMed
Taylor, WA, Skinner, JD and Boomker, J (2013) Nematodes of the small intestine of African buffaloes, Syncerus caffer, in the Kruger National Park, South Africa: research communicationOnderstepoort Journal of Veterinary Research 80, 14.CrossRefGoogle Scholar
Taylor, WA, Boomker, J, Krecek, RC, Skinner, JD, and Watermeyer, R (2005) Helminths in sympatric populations of mountain reedbuck (Redunca fulvorufula) and gray rhebok (Pelea capreolus) in South Africa. Journal of Parasitology 91, 863870.CrossRefGoogle ScholarPubMed
Tompkins, DM and Begon, M (1999) Parasites can regulate wildlife populationsParasitology Today 15, 311313.CrossRefGoogle ScholarPubMed
van Wyk, IC and Boomker, J (2011) Parasites of South African wildlife. XIX. The prevalence of helminths in some common antelopes, warthogs and a bushpig in the Limpopo province, South AfricaOnderstepoort Journal of Veterinary Research 78, 111.CrossRefGoogle Scholar
Vander Waal, K, Omondi, GP and Obanda, V (2014) Mixed-host aggregations and helminth parasite sharing in an East African wildlife–livestock systemVeterinary Parasitology 205, 224232.CrossRefGoogle Scholar
Watson, MJ (2013) What drives population-level effects of parasites? Meta-analysis meets life-historyInternational Journal for Parasitology: Parasites and Wildlife 2, 190196.Google ScholarPubMed
Williams, JH, Espie, I, Van Wilpe, E and Matthee, A (2002) Neosporosis in a white rhinoceros (Ceratotherium simum) calfJournal of the South African Veterinary Association 73, 3843.CrossRefGoogle Scholar
Yan, H, Bo, X, Liu, Y, Lou, Z, Ni, X, Shi, W, Zhan, F, Ooi, H and Jia, W (2013) Differential diagnosis of Moniezia benedeni and M. expansa (Anoplocephalidae) by PCR using markers in small ribosomal DNA (18S rDNA). Acta Veterinaria Hungarica 61, 463472.CrossRefGoogle Scholar
Zhao, WJ, Zhang, H, Bo, X, Li, Y and Fu, X (2009) Generation and analysis of expressed sequence tags from a cDNA library of Moniezia expansa. Molecular and Biochemical Parasitology 164, 8085.CrossRefGoogle ScholarPubMed
Zieger, U, Boomker, J, Cauldwell, AE and Horak, IG (1998) Helminths and bot fly larvae of wild ungulates on a game ranch in Central Province, Zambia. Onderspoort Journal of Veterinary Research 65, 137141.Google ScholarPubMed
Supplementary material: File

Phetla et al. supplementary material

Phetla et al. supplementary material
Download Phetla et al. supplementary material(File)
File 82.2 KB