Hostname: page-component-6587cd75c8-9kljr Total loading time: 0 Render date: 2025-04-23T11:34:53.331Z Has data issue: false hasContentIssue false

Diversity of trematodes (Platyhelminthes) in Mexico with an assessment of the availability of genetic data for their conservation

Published online by Cambridge University Press:  06 January 2025

Y. Velázquez-Urrieta
Affiliation:
Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, Calle IPN #195, La Paz, Baja California Sur, México, C.P. 23096
V. Mendoza-Portillo
Affiliation:
Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, Calle IPN #195, La Paz, Baja California Sur, México, C.P. 23096
F. J. García-De León*
Affiliation:
Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, Calle IPN #195, La Paz, Baja California Sur, México, C.P. 23096
*
Corresponding author: F. J. García-De León; Email: [email protected]

Abstract

Trematodes are one of the most abundant and diverse groups of platyhelminths. They parasitize all major groups of vertebrates as definitive hosts and therefore play an important role in ecosystem composition. It is estimated that 18,000 to 25,000 species of trematodes exist worldwide, of which 685 have been reported in Mexico. Although this group is an integral part of ecosystems, there are still no studies that highlight the importance of parasites, especially in conservation approaches. Here, we recompiled information on the occurrence and available genetic data of trematodes in Mexico to estimate the specific richness of their representation across the Protected Areas (PAs) and provinces of Mexico. We consulted national and international databases (e.g., GBIF, CONABIO, CNHE-UNAM) and genetic repositories (e.g., GenBank) to generate curated datasets. We obtained 6,780 records that represent 99% of species reported in Mexico (680 species), of which only 10.2% are included in PAs. For genetic data, we found information from five nuclear regions (28S, 18S, ITS1, ITS2 and 5.8S) and two mitochondrial genes (COI and NAD1) for 118 species, of which only 3.5% were associated with PAs. With these results, we provide a spatial distribution of records (occurrence and genetic data) of trematodes present in Mexico and its PAs and identify poorly represented biogeographic provinces (e.g., Sierra Madre del Sur). We also highlight that this is the first study in Mexico to include this group in a conservation approach, and we record valuable information for future studies.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Altizer, S, Harvell, D and Friedle, E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology & Evolution 18, 589596.CrossRefGoogle Scholar
Andrello, M, D’aloia, C, Dalongeville, A, Escalante, M, Guerrero, J, Perrier, C, Torres, P, Xuereb, A and Manel, S (2022) Evolving spatial conservation prioritization with intraspecific genetic data. Trends in Ecology & Evolution 37(6), 553564.CrossRefGoogle ScholarPubMed
Antil, S, Abraham, JS, Sripoorna, S, Maurya, S, Dagar, J, Makhija, S, Bhagat, P, Gupta, R, Sood, U, Lal, R and Toteja, R (2023) DNA barcoding, an effective tool for species identification: A review. Molecular Biology Reports 50(1), 761775.CrossRefGoogle ScholarPubMed
Birk, S, Chapman, D, Carvalho, L, Spears, B, Andersen, M, Argillier, C, Auer, S, Baattrup, A, Banin, L, Beklioglu, M, Bondar, E, Borja, A, Branco, P, Bucak, T, Buijse, A, Cardoso, A, Coutere, M, Cremona, F, Zwart, D, Feld, C, Ferreira, T, Feuchtmayr, H, Gessner, M and Gieswein, A (2020) Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology & Evolution 4, 10601068.CrossRefGoogle ScholarPubMed
Blasco-Costa, I, Cutmore, S, Miller, T and Nolan, M (2016) Molecular approaches to trematode systematics: best practice and implications for future study. Systematic Parasitology 93, 295306.CrossRefGoogle ScholarPubMed
Bray, RA, Gibson, DI and Jones, A (2008) Keys to the Trematoda, vol. 3. Wallingford: CABI Publishing and the Natural History Museum.Google Scholar
Cabrera-Guzman, E, Papes, E and García-Prieto, L (2021) Research on helminths from Mexican amphibians: Gaps, trends and biases. Journal of Helminthology 95, 113.CrossRefGoogle ScholarPubMed
Campos, A, Cummings, M, Reyes, J and Laclette, P (1998) Phylogenetic relationships of Platyhelminthes based on 18S ribosomal gene sequences. Molecular Phylogenetic and Evolution 10, 110.Google Scholar
Carlson, CJ, Hopkins, S, Bell, KC, Doña, J, Godfrey, SS, Kwak, M, Lafferty, D, Moir, L, Speer, A, Strona, G, Torchin, M and Wood, C (2020) A global parasite conservation plan. Biological Conservation 250, 108596.CrossRefGoogle Scholar
Cizauskas, C, Carlson, C, Burgio, R, Clements, C, Dougherty, E, Harris, N and Phillips, A (2017) Parasites vulnerability to climate change: an evidence-based functional trait approach. Royal Society Open Science 4, 160535.CrossRefGoogle ScholarPubMed
Crandall, ED, Toczydlowski, RH, Liggins, L, Holmes, AE, Ghoojaei, M, Gaither, M, Wham, B, Pritt, A, Noble, E, Himmelsbach, N, Queeno, S, Thinh, T, Weyand, C, Bentley, A, Deck, J, Riginis, C, Bradburd, G and Toonen, R (2023) Importance of timely metadata curation to the global surveillance of genetic diversity. Conservation Biology 37(4), e14061.CrossRefGoogle Scholar
Crellen, T, Allan, F, David, S, Durrant, C, Huckvale, T, Holroyd, N, Emery, AM, Rollinson, D, Aanensen, DM, Berriman, M, Webster, J and Cotton, J (2016) Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Scientific Reports 6, 20954.CrossRefGoogle ScholarPubMed
Comision Nacional para el Conocimiento y Uso de la Biodiversidad (2024) Areas naturales protegidas. Available at https://www.gob.mx/conabio (accessed November 1, 2024).Google Scholar
Dobson, A, Lafferty, KD, Kuris, AM, Hechinger, RF and Jetz, W (2008) Homage to Linnaeus: How many parasites? How many hosts? Proceedings of the National Academy of Sciences 105, 1148211489.CrossRefGoogle ScholarPubMed
Dougherty, E, Carlson, C, Bueno, V, Burgio, K, Cizauskas, C, Clements, C, Seidel, D and Harris, N (2016) Paradigms for parasite conservation. Conservation Biology 30, 724733.CrossRefGoogle ScholarPubMed
Esch, GW, Barger, MA and Fellis, KJ (2002) The transmission of digenetic trematodes: style, elegance, complexity. Integrative and Comparative Biology 42(2), 304312.CrossRefGoogle ScholarPubMed
Exposito-Alonso, T, Booker, L, Czech, L, Gillespie, S, Hateley, CC, Kyriazis, PL, Lang, L, Leventhal, D, Nogues-Bravo, V, Pagowski, M, Ruffley, JP, Spence, J, Toro-Arana, CL, Weiss, C and Zess, E (2022) Genetic diversity loss in the Anthropocene. Science 377, 14311435.CrossRefGoogle ScholarPubMed
García-Prieto, L, Mendoza-Garfias, B and Pérez-Ponce de León, G (2014) Biodiversidad de Platyhelminthes parásitos en México. Revista Mexicana de Biodiversidad 85, 164170.CrossRefGoogle Scholar
Gibson, D, Jones, A and Bray, RA (2002) Key to the Trematoda, vol. 1. Gibson, D, Jones, A and Bray, RA (eds). London, UK: CABI Publishing and The Natural History Museum.Google Scholar
Halpern, B, Walbridge, S, Selkoe, K, Kappel, C, Micheli, F, D’Agrosa, C, Bruno, J, Casey, K, Ebert, C, Fox, E, Fujita, R, Heinemann, D, Lenihan, H, Madin, E, Perry, M, Selig, E, Spalding, M, Steneck, R and Watson, R (2008) A global map of human impact on marine ecosystems. Science 319, 948952.CrossRefGoogle ScholarPubMed
Hebert, P, Stoeckle, MY, Zemlak, TS and Francis, CM (2004) Identification of birds through DNA barcodes. PLoS Biology 2, e312.CrossRefGoogle ScholarPubMed
Jones, A, Bray, RA and Gibson, DI (2005) Keys to the Trematoda, vol. 2. Jones, A, Bray, RA and Gibson, DI (eds.). London, UK: CABI Publishing and The Natural History Museum.Google Scholar
Kostadinova, A and Pérez-del-Olmo, A (2014) The systematics of the trematoda. In Toledo, R and Fried, B (eds), Trematodes, Digenea. New York: Springer Science+Business Media, 2144.Google ScholarPubMed
Lafferty, KD (2012) Biodiversity loss decrease parasites diversity: Theory and patterns. Philosophical Transactions of the Royal Society B 367, 28142827.CrossRefGoogle ScholarPubMed
Leigh, DM, Hendry, AP, Vázquez-Domínguez, E and Friesen, VL (2019) Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evolutionary Applications 12(8), 15051512.CrossRefGoogle ScholarPubMed
León-Règagnon, V, Brooks, D and Pérez-Ponce de León, G (1999) Differentiation of Mexican species of Haematoloechus Looss, 1899 (Digenea: Plagiorchiformes): Molecular and morphological evidence. Journal of Parasitology, 85(5): 935946.CrossRefGoogle Scholar
Morrone, J, Escalante, T and Rodríguez-Tapia, G (2017) Mexicana biogeographic province: Map and shapefiles. Zootaxa 4277, 277279.CrossRefGoogle Scholar
Nadler, S and Pérez-Ponce de León, G (2011) Integrating molecular and morphological approaches for characterizing parasite cryptic species: Implications for parasitology. Parasitology 138, 16881709.CrossRefGoogle ScholarPubMed
Pérez-Ponce de León, G (2001) The diversity of digeneans (Platyhelminthes: Cercomeria: Trematoda) in vertebrates in Mexico. Comparative Parasitology 68, 18.Google Scholar
Pérez-Ponce de León, G and Hernández-Mena, D (2019) Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life. Journal of Helminthology 93, 260276.CrossRefGoogle ScholarPubMed
Pérez-Ponce de León, G, García-Prieto, L and Mendoza-Garfias, B (2007) Trematode parasites (Platyhelminthes) of wildlife vertebrates in Mexico. Zootaxa 1534, 1247.Google Scholar
Pérez-Ponce de León, G, León- Règagnon, V, García-Prieto, L, Razo-Mendivil, U and Sánchez-Alvarez, A (2000) Digenean fauna of amphibians from Central Mexico: Nerartic and neotropical influences. Comparative Parasitology 76, 92106.Google Scholar
Poulin, R and Morand, S (2000) The diversity of parasites. Quarterly Review of Biology 75(3), 277293.CrossRefGoogle ScholarPubMed
Poulin, R and Presswell, B (2016) Taxonomic quality of species description varies over time and with the number of authors, but unevenly among parasitic taxa. Systematic Biology 65, 11071116.CrossRefGoogle ScholarPubMed
R Core Team (2023). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
Rubio-Godoy, M and Pérez Ponce de León, G (2023) Equal rights for parasites: Windsor 1995, revisited after ecological parasitology has come of age. Biological Conservation 284, 110174.CrossRefGoogle Scholar
Salgado-Maldonado, G, Aguilar-Aguilar, R, Cabanãs-Carranza, G, Soto-Galera, E and Mendoza-Palmero, C (2005) Helminth parasites in freshwater fish from the Papaloapan river basin, Mexico. Parasitology Research 96, 13151319.CrossRefGoogle ScholarPubMed
Sanderson, E, Jaiteh, M, Levy, M, Redford, H, Wannebo, A and Woolmer, G (2002) The human footprint and the last of the wild. BioScience 52, 891904.CrossRefGoogle Scholar
Schwelm, J, Selbach, C, Kremers, J and Sures, B (2021) Rare inventory of trematode diversity in a protected natural reserve. Scientific Reports 11, 22066.CrossRefGoogle Scholar
Sokoloff, D and Caballero, CE (1932) Una nueva especie de trematodos parásitos de Rana montezumae. Anales del Instituto de Biologia, Universidad Nacional Autónoma de Mexico 4, 1521.Google Scholar
Velázquez-Urrieta, Y and Pérez-Ponce de León, G (2020) Molecular and morphological elucidation of the life cycle of the frog trematode Langeronia macrocirra (Digenea: Pleurogenidae) in Los Tuxtlas, Veracruz, Mexico. Journal of Parasitology 106, 537545.CrossRefGoogle ScholarPubMed
Velázquez-Urrieta, Y and de León G, Pérez-Ponce (2021) Morphological and molecular assessment of the diversity of trematode communities in freshwater gastropods and bivalves in Los Tuxtlas tropical rainforest. Journal of Helminthology 95(e44), 116.CrossRefGoogle Scholar
Velázquez-Urrieta, Y and Pérez-Ponce de León, G (2021a) Morphological and molecular assessment of the diversity of trematode communities in freshwater gastropods and bivalves in Los Tuxtlas tropical rainforest. Journal of Helminthology 95, e44.CrossRefGoogle Scholar
Velázquez-Urrieta, Y and Pérez-Ponce de León, G (2021b) A new species of Gorgoderina (Digenea: Gorgoderidae) from Rana berlandieri in Los Tuxtlas tropical rainforest, Mexico, with the elucidation of its life cycle. Parasitology International 83, 102352.CrossRefGoogle ScholarPubMed
Velázquez-Urrieta, Y and Pérez-Ponce de León, G (2022) Molecular link between the metacercariae and adults of four species Haematoloechus (Digenea: Plagiorchioidea), including scanning electron microscopy characterization. Parasitology International 89, 102578.CrossRefGoogle ScholarPubMed
Weber, JN, Steinel, NC, Peng, F, Shim, KC, Lohman, BK, Fuess, LE, Subramanian, S, Lisle, S and Bolnick, DI (2022) Evolutionary gain and loss of a pathological immune response to parasitism. Science 377, 1206–121.CrossRefGoogle ScholarPubMed
Whiteman, NK and Parker, PG (2005) Using parasites to infer host population history: A new rationale for parasite conservation. In Animal Conservation Forum. Cambridge: Cambridge University Press, 175181.Google Scholar
Supplementary material: File

Velázquez-Urrieta et al. supplementary material 1

Velázquez-Urrieta et al. supplementary material
Download Velázquez-Urrieta et al. supplementary material 1(File)
File 401.7 KB
Supplementary material: File

Velázquez-Urrieta et al. supplementary material 2

Velázquez-Urrieta et al. supplementary material
Download Velázquez-Urrieta et al. supplementary material 2(File)
File 17.5 KB