Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T21:01:04.408Z Has data issue: false hasContentIssue false

Diagnosis of the pinworm Syphacia muris in the Wistar rat Rattus norvegicus

Published online by Cambridge University Press:  20 October 2014

J.E.N. Sousa
Affiliation:
Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia. Av. Pará, 1720, 38400-902, Uberlândia, MG, Brazil
E.F.G. Carvalho
Affiliation:
Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia. Av. Pará, 1720, 38400-902, Uberlândia, MG, Brazil
M.A. Levenhagen
Affiliation:
Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia. Av. Pará, 1720, 38400-902, Uberlândia, MG, Brazil
L.A. Chaves
Affiliation:
Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia. Av. Pará, 1720, 38400-902, Uberlândia, MG, Brazil
J.M. Costa-Cruz*
Affiliation:
Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia. Av. Pará, 1720, 38400-902, Uberlândia, MG, Brazil
*

Abstract

This study aimed to compare three qualitative parasitological methods for the diagnosis of Syphacia muris infection in 30 Wistar rats (Rattus norvegicus) infected naturally. Methods of spontaneous sedimentation (Hoffman, Pons and Janer, or HPJ) and spontaneous flotation (Willis) for faecal samples and a method of taping (Graham) were performed and compared. The Graham and Willis methods were more sensitive than the HPJ method (P< 0.05). The Graham method was able to detect S. muris eggs in 100% of the samples. Eggs were detected in 83% and 60% of the samples using the Willis and HPJ methods, respectively. Method choice is important for screening for parasites of rats kept under laboratory conditions, as accurate diagnosis helps prevent future environmental contamination and infection. We concluded that the Graham method was the most efficient of those tested in this study for detection of S. muris infection in rats. This method is also rapid, inexpensive and practical, and should be implemented as a necessary measure for infection control.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, D.G. (1998) Natural pathogens of laboratory mice, rats and rabbits and their effects on research. Clinical Microbiology Reviews 11, 231266.CrossRefGoogle ScholarPubMed
Bicalho, K.A., Araujo, F.T.M., Rocha, R.S. & Carvalho, O.S. (2007) Sanitary profile in mouse and rat colonies in laboratory animal houses in Minas Gerais: I – Endo- and Ectoparasites. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 59, 14781484.CrossRefGoogle Scholar
Carvalho, G.L.X., Moreira, L.E., Pena, J.L., Marinho, C.C., Bahia, M.T. & Machado-Coelho, G.L. (2012) A comparative study of the TF-Test®, Kato-Katz, Hoffman-Pons-Janer, Willis and Baermann-Moraes coprologic methods for the detection of human parasitosis. Memórias do Instituto Oswaldo Cruz 107, 8084.CrossRefGoogle ScholarPubMed
Casebolt, D.B., Lindsey, J.R. & Cassell, G.H. (1988) Prevalence rates of infectious agents among commercial breeding populations of rats and mice. Laboratory Animal Science 38, 327329.Google ScholarPubMed
Dix, J., Astill, J. & Whelan, G. (2004) Assessment of methods of destruction of Syphacia muris eggs. Laboratory Animals 38, 1116.CrossRefGoogle ScholarPubMed
Doyle, R.L., Monteiro, S.G., Graça, D.L., Santurio, J.M., Silva, A. S. da & Bertolin, K. (2006) Avaliação helmintológica de camundongos (Mus musculus) criados em biotério experimental. Revista da Faculdade Zootecnia, Veterinária e Agronomia 13, 18.Google Scholar
Gilioli, R., Andrade, L.A.G., Passos, L.A.C., Silva, F.A., Rodrigues, D.M. & Guaraldo, A.M.A. (2000) Parasite survey in mouse and rat colonies of Brazilian laboratory animal houses kept under different sanitary barrier conditions. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 52, 13271334.CrossRefGoogle Scholar
Graham, C.F. (1941) A device for the diagnosis of Enterobius infection. American Journal of Tropical Medicine and Hygiene 21, 159161.CrossRefGoogle Scholar
Hayashimoto, N., Morita, H., Ishida, T., Yasuda, M., Kameda, S., Uchida, R., Tanaka, M., Ozawa, M., Sato, A., Takakura, A., Itoh, T. & Kagiyama, N. (2013) Current microbiological status of laboratory mice and rats in experimental facilities in Japan. Experimental Animals 62, 4148.CrossRefGoogle ScholarPubMed
Hill, W.A., Randolph, M.M. & Mandrell, T.D. (2009) Sensitivity of perianal tape impressions to diagnose pinworm (Syphacia spp.) infections in rats (Rattus norvegicus) and mice (Mus musculus). Journal of the American Association for Laboratory Animal Science 48, 378380.Google ScholarPubMed
Hoffman, W.A., Pons, J.A. & Janer, J.L. (1934) The sedimentation concentration method in schistosomiasis mansoni. Puerto Rico Journal of Public Health and Tropical Medicine 9, 283291.Google Scholar
Huq, M.M., Karim, M.J. & Sheikh, H. (1985) Helminth parasites of rats, house mouse and moles in Bangladesh. Pakistan Veterinary Journal 5, 143144.Google Scholar
Jeandron, A., Abdyldaieva, G., Usubalieva, J., Ensink, J.H., Cox, J., Matthys, B., Rinaldi, L., Cringoli, G. & Utzinger, J. (2010) Accuracy of the Kato–Katz, adhesive tape and FLOTAC techniques for helminth diagnosis among children in Kyrgyzstan. Acta Tropica 116, 185192.CrossRefGoogle ScholarPubMed
Lewis, J.W. & d'Silva, J. (1986) The life-cycle of Syphacia muris Yamaguti (Nematoda: Oxyuroidea) in the laboratory rat. Journal of Helminthology 60, 3946.CrossRefGoogle ScholarPubMed
Luca, R.R., Alexandre, S.R., Marques, T., de Sousa, N.L., Merusse, B. & Neves, S.P. (1996) Manual para técnicos em bioterismo. 2nd edn.257 pp. São Paulo, COBEA.Google Scholar
Lytvynets, A., Langrová, I., Lachout, J., Vadlejch, J., Fučíková, A. & Jankovská, I. (2010) Drinking water ivermectin treatment for eradication of pinworm infections from laboratory rat colonies. Helminthologia 47, 233237.CrossRefGoogle Scholar
Lytvynets, A., Langrova, I., Lachout, J. & Vadlejch, J. (2013) Detection of pinworm eggs in the dust of laboratory animals breeding facility, in the cages and on the hands of the technicians. Laboratory Animals 47, 7173.CrossRefGoogle ScholarPubMed
Pritchett, K.R. & Johnston, N.A. (2002) A review of treatment for the eradication of pinworm infections from laboratory rodent colonies. Contemporary Topics in Laboratory Animal Science 41, 3646.Google ScholarPubMed
Taffs, L.F. (1976) Pinworm infections in laboratory rodents: a review. Laboratory Animals 10, 113.CrossRefGoogle ScholarPubMed
Tanideh, N., Sadjjadi, S.M., Mohammadzadeh, T. & Mehrabani, D. (2010) Helminthic infections of laboratory animals in Animal House of Shiraz University of Medical Sciences and the potential risks of zoonotic infections for researchers. Iranian Red Crescent Medical Journal 12, 151157.Google Scholar
Wagner, M. (1988) The effect of infection with the pinworm (Syphacia muris) on rat growth. Laboratory Animal Science 38, 476478.Google ScholarPubMed
Willis, H.H. (1921) A simple levitation method for the detection of hookworm ova. Medical Journal of Australia 8, 375376.CrossRefGoogle Scholar