Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T20:14:06.603Z Has data issue: false hasContentIssue false

Climate warming and disease risks in temperate regions – Argulus coregoni and Diplostomum spathaceum as case studies

Published online by Cambridge University Press:  12 April 2024

T. Hakalahti*
Affiliation:
Department of Biological and Environmental Science, PO Box 35 (ya), FI-40014, University of Jyväskylä, Finland
A. Karvonen
Affiliation:
Department of Biological and Environmental Science, PO Box 35 (ya), FI-40014, University of Jyväskylä, Finland
E.T. Valtonen
Affiliation:
Department of Biological and Environmental Science, PO Box 35 (ya), FI-40014, University of Jyväskylä, Finland
*
* Fax: +358 14 2602321, E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The link between climate changes and disease risks from various pathogens has been increasingly recognized. The effect of climatic factors on host–parasite population dynamics is particularly evident in northern latitudes where the occurrence and transmission of parasites are strongly regulated by seasonality-driven changes in environmental temperatures. Shortened winter periods would increase growth potential of many parasite populations. The ways in which climate warming could affect life history dynamics of the directly transmitted crustacean ectoparasite Argulus coregoni and complex life cycle trematode Diplostomum spathaceum, which frequently cause problems in northern fish farming, are discussed. Increased problems for fish farming are predicted in terms of increased infection pressure from these parasites in future. This would increase problems associated with infections and increase the use of expensive management protocols with high environmental impact.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

References

Buchmann, K. & Uldal, A. (1994) Effects of eyefluke infections on the growth of rainbow trout (Oncorhynchus mykiss) in a mariculture system. Bulletin of the European Association of Fish Pathologists 14, 104107.Google Scholar
Bradford, M.J. & Roff, D.A. (1993) Bet hedging and the diapause strategies of the cricket Allonemobius fasciatus . Ecology 74, 11291135.CrossRefGoogle Scholar
Chappell, L.H., Hardie, L.J. & Secombes, C.J. (1994) Diplostomiasis: the disease and host–parasite interactions, pp. 5986 in Pike, A.W. & Lewis, J.W. (Eds) Parasitic diseases of fish. Dyfed, Samara Publishing Limited.Google Scholar
Crowden, A.E. & Broom, D.M. (1980) Effects of the eyefluke, Diplostomum spathaceum, on the behaviour of dace (Leuciscus leuciscus) . Animal Behaviour 28, 287294.CrossRefGoogle Scholar
Dogiel, V.A., Petrushevski, G.K. & Polyanski, Y.I. (1961) Parasitology of fishes. 384 pp. Edinburgh, Oliver & Boyd.Google Scholar
Fenton, A. & Hudson, P.J. (2002) Optimal infection strategies: should macroparasites hedge their bets? Oikos 96, 92101.CrossRefGoogle Scholar
Fenton, A. & Rands, S.A. (2004) Optimal parasite infection strategies: a state-dependent approach. International Journal for Parasitology 34, 813821.CrossRefGoogle ScholarPubMed
Field, J.S. & Irwin, S.W.B. (1994) The epidemiology, treatment and control of diplostomiasis on a fish farm in Northern Ireland. pp. 87100 in Pike, A.W. & Lewis, J.W. (Eds) Parasitic diseases of fish. Dyfed, Samara Publishing Limited.Google Scholar
Hakalahti, T. & Valtonen, E.T. (2003) Population structure and recruitment of the ectoparasite Argulus coregoni Thorell (Crustacea: Branchiura) on a fish farm. Parasitology 127, 7985.CrossRefGoogle ScholarPubMed
Hakalahti, T., Häkkinen, H. & Valtonen, E.T. (2004a) Ectoparasitic Argulus coregoni hedge their bets – studies on egg hatching dynamics. Oikos 107, 295302.CrossRefGoogle Scholar
Hakalahti, T., Pasternak, A.F. & Valtonen, E.T. (2004b) Seasonal dynamics of egg laying and egg-laying strategy of the ectoparasite Argulus coregoni (Crustacea: Branchiura). Parasitology 128, 655660.CrossRefGoogle ScholarPubMed
Hakalahti, T., Lankinen, Y. & Valtonen, E.T. (2004c) Efficacy of emamectin benzoate in the control of Argulus coregoni (Crustacea: Branchiura) on rainbow trout Oncorhynchus mykiss . Diseases of Aquatic Organisms 60, 197204.CrossRefGoogle ScholarPubMed
Hakalahti, T., Bandilla, M. & Valtonen, E.T. (2005) Delayed transmission of a parasite is compensated by accelerated growth. Parasitology 131, 647656.CrossRefGoogle ScholarPubMed
Harvell, C.D., Kim, K., Burkholder, J.M., Colwell, R.R., Epstein, P.R., Grimes, D.J., Hofmann, E.E., Lipp, E.K., Osterhaus, A.D.M.E., Overstreet, R.M., Porter, J.W. & Vasta, G.R. (1999) Emerging marine diseases – climate links and anthropogenic factors. Science 285, 15051510.CrossRefGoogle ScholarPubMed
Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A., Ostfeld, R.S. & Samuel, M.J. (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296, 21582162.CrossRefGoogle ScholarPubMed
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, P., van der Linden, J. & Xiaosu, D. (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge, Cambridge University Press.Google Scholar
Karvonen, A., Kirsi, S., Hudson, P.J. & Valtonen, E.T. (2004a) Patterns of cercarial production from Diplostomum spathaceum: terminal investment or bet hedging? Parasitology 129, 8792.CrossRefGoogle ScholarPubMed
Karvonen, A., Seppälä, O. & Valtonen, E.T. (2004b) Eye fluke-induced cataract formation in fish: quantitative analysis using an ophthalmological microscope. Parasitology 129, 473478.CrossRefGoogle ScholarPubMed
Karvonen, A., Seppälä, O. & Valtonen, E.T. (2004c) Parasite resistance and avoidance behaviour in preventing eye fluke infections in fish. Parasitology 129, 159164.CrossRefGoogle ScholarPubMed
Lester, R.J.G. & Roubal, F.R. (1995) Phylum Arthropoda. pp. 475598 in Woo, P.T.K. (Ed.) Fish diseases and disorders, Vol 1. Protozoan and metazoan infections. Wallingford, Oxon, CAB International.Google Scholar
Mikheev, V.N., Pasternak, A.F., Valtonen, E.T. & Lankinen, Y. (2001) Spatial distribution and hatching of overwintered eggs in a fish ectoparasite Argulus coregoni Thorell (Crustacea: Branchiura). Diseases of Aquatic Organisms 46, 123128.CrossRefGoogle Scholar
Mousseau, T.A. & Fox, C.W. (1998) The adaptive significance of maternal effects. Trends in Ecology and Evolution 13, 403406.CrossRefGoogle ScholarPubMed
Mousseau, T.A. & Roff, D.A. (1989) Adaptation to seasonality in a cricket: patterns of phenotypic and genotypic variation in body size and diapause expression along a cline in season length. Evolution 43, 14831496.CrossRefGoogle Scholar
Owen, S.F., Barber, I. & Hart, P.J.B. (1993) Low level infection by eye fluke, Diplostomum spp., affects the vision of three-spined sticklebacks, Gasterosteus aculeatus . Journal of Fish Biology 42, 803806.Google Scholar
Poulin, R. (2003) Information about transmission opportunities triggers a life-history switch in a parasite. Evolution 57, 28992903.Google Scholar
Seppälä, O., Karvonen, A. & Valtonen, E.T. (2004) Parasite-induced change in host behaviour and susceptibility to predation in an eye fluke–fish interaction. Animal Behaviour 68, 257263.CrossRefGoogle Scholar
Seppälä, O., Karvonen, A. & Valtonen, E.T. (2005a) Impaired crypsis of fish infected with a trophically transmitted parasite. Animal Behaviour 70, 895900.CrossRefGoogle Scholar
Seppälä, O., Karvonen, A. & Valtonen, E.T. (2005b) Manipulation of fish host by eye flukes in relation to cataract formation and parasite infectivity. Animal Behaviour 70, 889894.CrossRefGoogle Scholar
Shafir, A. & van As, J.G. (1986) Laying, development and hatching of eggs of the fish ectoparasite Argulus japonicus (Crustacea: Branchiura). Journal of Zoology 210, 401414.CrossRefGoogle Scholar
Shariff, M., Richards, R.H. & Sommerville, C. (1980) The histopathology of acute and chronic infections of rainbow trout Salmo gairdneri Richardson with eye flukes, Diplostomum spp. Journal of Fish Diseases 3, 455465.CrossRefGoogle Scholar
Shimura, S. (1983) Seasonal occurrence, sex ratio and site preference of Argulus coregoni Thorell (Crustacea: Branchiura) parasitic on cultured freshwater salmonids in Japan. Parasitology 86, 537552.CrossRefGoogle Scholar
Stables, J.N. & Chappell, L.H. (1986) The epidemiology of diplostomiasis in farmed rainbow trout from north-east Scotland. Parasitology 92, 699710.CrossRefGoogle ScholarPubMed
Thomas, C., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, C., Erasmus, B.F.N., Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. & Williams, S.E. (2004) Extinction risk from climate change. Nature 427, 145148.CrossRefGoogle ScholarPubMed
Thomas, F., Brown, S.P., Sukhdeo, M. & Renaud, F. (2002) Understanding parasite strategies: a state dependent approach? Trends in Parasitology 18, 387390.CrossRefGoogle ScholarPubMed
Waadu, G.D.B. & Chappell, L.H. (1991) Effect of water temperature on the ability of Diplostomum spathaceum miracidia to establish in lymnaeid snails. Journal of Helminthology 65, 179185.CrossRefGoogle ScholarPubMed
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O. & Bairlein, F. (2002) Ecological responses to recent climate change. Nature 416, 389395.CrossRefGoogle ScholarPubMed