Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T21:06:26.500Z Has data issue: false hasContentIssue false

Characterization of the complete mitochondrial genome of Nippotaenia mogurndae Yamaguti and Miyata, 1940 (Cestoda: Nippotaeniidae)

Published online by Cambridge University Press:  06 September 2022

Ze-Yi Cao
Affiliation:
Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Bing-Wen Xi*
Affiliation:
Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Shao-Wu Li
Affiliation:
Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
Kai Chen
Affiliation:
Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Jun Xie
Affiliation:
Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
*
Authors for correspondence: Bing-Wen Xi, E-mail: [email protected]; Jun Xie, E-mail: [email protected]

Abstract

In this study, we report the first complete mitochondrial genome of the tapeworm Nippotaenia mogurndae in the order Nippotaeniidea Yamaguti, 1939. This mitogenome, which is 14,307 base pairs (bp) long with an A + T content of 72.2%, consists of 12 protein-coding genes, 22 transfer RNA (tRNA) genes, two rRNA genes, and two non-coding regions. Most tRNAs have a conventional cloverleaf structure, but trnS1 and trnR lack dihydrouridine arms of tRNA. The two largest non-coding regions, NCR1 (220 bp) and NCR2 (817 bp), are located between trnY and trnS2 and between nad5 and trnG, respectively. Phylogenetic analyses of mitogenomic data indicate that N. mogurndae is closely related to tapeworms in the order Cyclophyllidea.

Type
Short Communication
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, SF, Gish, W, Miller, W, Myers, EW and Lipman, DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215(3), 403410.CrossRefGoogle ScholarPubMed
Benson, G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27(2), 573580.CrossRefGoogle ScholarPubMed
Bernt, M, Donath, A, Jühling, F, Externbrink, F, Florentz, C, Fritzsch, G, Pütz, J, Middendorf, M and Stadler, PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2), 313319.CrossRefGoogle ScholarPubMed
Bombarová, M, Špakulová, M and Oros, M (2005) A karyotype of Nippotaenia mogumdae: the first cytogenetic data within the order Nippotaeniidea (Cestoda). Helmithologia 42(1), 2730.Google Scholar
Bray, RA (1994) Order Nippotaeniidea Yamaguti, 1939. pp. 253255. In Khalil, LF, Jones, A and Bray, RA (Eds) Keys to the cestode parasites of vertebrates. Wallingford, CAB International.Google Scholar
Burland, TG (2000) DNASTAR's Lasergene sequence analysis software. pp. 7191. In Misener, S and Krawetz, SA (Eds) Bioinformatics methods and protocols. Totowa, NJ, Humana Press.Google Scholar
Caira, JN, Jensen, K, Waeschenbach, A, Olson, PD and Littlewood, DTJ (2014) Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. International Journal for Parasitology 44(1), 5573.CrossRefGoogle ScholarPubMed
Guo, A (2017) Moniezia benedeni and Moniezia expansa are distinct cestode species based on complete mitochondrial genomes. Acta Tropica 166, 287292.CrossRefGoogle ScholarPubMed
Hine, PM (1977) New species of Nippotaenia and Amurotaenia (Cestoda: Nippotaeniidae) from New Zealand freshwater fishes. Journal of the Royal Society of New Zealand 7(2), 143155.CrossRefGoogle Scholar
Hoberg, EP, Mariaux, J, Justine, JL, Brooks, DR and Weekes, PJ (1997) Phylogeny of the orders of the Eucestoda (Cercomeromorphae) based on comparative morphology: historical perspectives and a new working hypothesis. Journal of Parasitology 83(6), 11281147.CrossRefGoogle Scholar
Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A and Jermiin, LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14(6), 587589.CrossRefGoogle ScholarPubMed
Katoh, K and Standley, DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4), 772780.CrossRefGoogle ScholarPubMed
Kearse, M, Moir, R, Wilson, A, et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 16471649.CrossRefGoogle ScholarPubMed
Košuthová, L, Koščo, J, Miklisová, D, Letková, V, Košuth, P and Manko, P (2008) New data on an exotic Nippotaenia mogurndae (Cestoda), newly introduced to Europe. Helminthologia 45(2), 8185.CrossRefGoogle Scholar
Kvach, Y, Drobiniak, O, Kutsokon, Y and Hoch, I (2013) The parasites of the invasive Chinese sleeper Perccottus glenii (Fam. Odontobutidae), with the first report of Nippotaenia mogurndae in Ukraine. Knowledge and Management of Aquatic Ecosystems 409(5), 111.Google Scholar
Laslett, D and Canback, B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24(2), 172175.CrossRefGoogle ScholarPubMed
Letunic, I and Bork, P (2021) Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49(W1), W293W296.CrossRefGoogle ScholarPubMed
Li, WX, Zhang, D, Boyce, K, Xi, BW, Zou, H, Wu, SG, Li, M and Wang, GT (2017) The complete mitochondrial DNA of three monozoic tapeworms in the Caryophyllidea: a mitogenomic perspective on the phylogeny of eucestodes. Parasites & Vectors 10(1), 113.CrossRefGoogle ScholarPubMed
Mierzejewska, K, Martyniak, A, Kakareko, T and Hliwa, P (2010) First record of Nippotaenia mogurndae Yamaguti and Miyata, 1940 (Cestoda, Nippotaeniidae), a parasite introduced with Chinese sleeper to Poland. Parasitology Research 106(2), 451456.CrossRefGoogle Scholar
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. pp. 1–8. In 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, Institute of Electrical and Electronics Engineers.CrossRefGoogle Scholar
Ranwez, V, Douzery, EJP, Cambon, C, Chantret, N and Delsuc, F (2018) MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Molecular Biology and Evolution 35(10), 25822584.CrossRefGoogle ScholarPubMed
Ronquist, F, Teslenko, M, van der Mark, P, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3), 539542.CrossRefGoogle ScholarPubMed
Sokolov, SG, Bel'kova, NL and Maikova, OO (2018) The phylogenetic position of the cestode Nippotaenia mogurndae Yamaguti et Miyata, 1940 (Cestoda: Nippotaeniidae), a parasite of the Chinese sleeper Perccottus glenii Dybowski, 1877 (Actinopterygii: Odontobutidae), based on a partial sequence of the 18S rRNA gene. Biology Bulletin 45(3), 242246.CrossRefGoogle Scholar
Talavera, G and Castresana, J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56(4), 564577.CrossRefGoogle ScholarPubMed
Trifinopoulos, J, Nguyen, LT, von Haeseler, A and Minh, BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1), W232W235.CrossRefGoogle ScholarPubMed
von Nickisch-Rosenegk, M, Brown, WM and Boore, JL (2001) Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that platyhelminths are eutrochozoans. Molecular Biology and Evolution 18(5), 721730.CrossRefGoogle ScholarPubMed
Waeschenbach, A, Webster, BL, Bray, RA and Littlewood, DTJ (2007) Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Molecular Phylogenetics and Evolution 45(1), 311325.CrossRefGoogle ScholarPubMed
Waeschenbach, A, Webster, BL and Littlewood, DTJ (2012) Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Molecular Phylogenetics and Evolution 63(3), 834847.CrossRefGoogle ScholarPubMed
Wickham, H (2009) Ggplot2. New York, Springer New York.CrossRefGoogle Scholar
Xi, BW, Zhang, D, Li, WX, Yang, BJ and Xie, J (2018) Characterization of the complete mitochondrial genome of Parabreviscolex niepini Xi et al., 2018 (Cestoda, Caryophyllidea). ZooKeys 783, 97112.CrossRefGoogle Scholar
Zhang, D, Zou, H, Wu, SG, Li, M, Jakovlić, I, Zhang, J, Chen, R, Wang, GT and Li, WX (2017a) Sequencing of the complete mitochondrial genome of a fish-parasitic flatworm Paratetraonchoides inermis (Platyhelminthes: Monogenea): tRNA gene arrangement reshuffling and implications for phylogeny. Parasites & Vectors 10, 462.CrossRefGoogle Scholar
Zhang, D, Gao, F, Jakovlić, I, Zou, H, Zhang, J, Li, WX and Wang, GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20(1), 348355.CrossRefGoogle ScholarPubMed
Zhang, G, Wang, J, Luo, Y, et al. (2017b) In vivo evaluation of the efficacy of Sophora moorcroftiana alkaloids in combination with Bacillus Calmette–Guérin (BCG) treatment for cystic echinococcosis in mice. Journal of Helminthology 92(6), 681686.CrossRefGoogle Scholar
Zou, H, Jakovlić, I, Chen, R, Zhang, D, Zhang, J, Li, WX and Wang, GT (2017) The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics 18(1), 840.CrossRefGoogle ScholarPubMed
Supplementary material: File

Cao et al. supplementary material

Cao et al. supplementary material

Download Cao et al. supplementary material(File)
File 592.9 KB