Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T22:14:52.220Z Has data issue: false hasContentIssue false

Characterization of Dicrocoelium dendriticum isolates from small ruminants in Shaanxi Province, north-western China, using internal transcribed spacers of nuclear ribosomal DNA

Published online by Cambridge University Press:  26 July 2013

Q.Q. Bian
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
G.H. Zhao*
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
Y.Q. Jia
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
Y.Q. Fang
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
W.Y. Cheng
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
S.Z. Du
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
X.T. Ma
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
Q. Lin*
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
*
*Fax: +86-29-87081762 E-mails: [email protected] (G.H. Zhao); [email protected] (Q. Lin)
*Fax: +86-29-87081762 E-mails: [email protected] (G.H. Zhao); [email protected] (Q. Lin)

Abstract

The genetic variations in internal transcribed spacers (ITS) spanning ITS-1, 5.8S and ITS-2 rDNA of Dicrocoelium dendriticum, isolated from sheep and goats in four geographical regions in Shaanxi province, were examined. The lengths of ITS-1, 5.8S and ITS-2 rDNA sequences for D. dendriticum were 749 bp, 161 bp and 234 bp, respectively. Intra-specific sequence variations of D. dendriticum were 0–0.5% for ITS-1 and 0–1.3% for ITS-2 rDNA, while the inter-specific variations among species in genus Dicrocoelium in ITS-2 rDNA were 3.4–12.3%. Phylogenetic analysis based on sequences of ITS-2 rDNA showed that all D. dendriticum isolates in the present study were grouped with reference D. dendriticum isolates from sheep and goats, and D. dendriticum isolates from cattle and Japanese serow were clustered in a sister clade. However, the phylogenetic tree could not reveal geographically genetic relationships of D. dendriticum isolates in different origins and hosts. These findings provided basic information for further study of molecular epidemiology and control of D. dendriticum infection in Shaanxi province as well as in the world.

Type
Short Communications
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, H., Ai, L., Song, H.Q., Ali, S., Lin, R.Q., Seyni, B., Issa, G. & Zhu, X.Q. (2008) Genetic characterisation of Fasciola samples from different host species and geographical localities revealed the existence of F. hepatica and F. gigantica in Niger. Parasitology Research 102, 10211024.Google Scholar
Burland, T.G. (2000) DNASTAR's Lasergene sequence analysis software. Methods in Molecular Biology 132, 7191.Google Scholar
Campo, R., Manga-González, M.Y. & González-Lanza, C. (2000) Relationship between egg output and parasitic burden in lambs experimentally infected with different doses of Dicrocoelium dendriticum (Digenea). Veterinary Parasitology 87, 139149.CrossRefGoogle ScholarPubMed
Chilton, N.B., Gasser, R.B. & Beveridge, I. (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). International Journal for Parasitology 25, 647651.Google Scholar
Chitimia, L., Lin, R.Q., Cosoroaba, I., Braila, P., Song, H.Q. & Zhu, X.Q. (2009) Molecular characterization of hard ticks from Romania by sequences of the internal transcribed spacers of ribosomal DNA. Parasitology Research 105, 14791482.CrossRefGoogle ScholarPubMed
Gasser, R.B., Rossi, L. & Zhu, X.Q. (1999) Identification of Nematodirus species (Nematoda: Molineidae) from wild ruminants in Italy using ribosomal DNA markers. International Journal for Parasitology 29, 18091817.Google Scholar
Gasser, R.B., Bott, N.J., Chilton, N.B., Hunt, P. & Beveridge, I. (2008) Toward practical, DNA-based diagnostic methods for parasitic nematodes of livestock – bionomic and biotechnological implications. Biotechnology Advances 26, 325334.CrossRefGoogle ScholarPubMed
González-Lanza, C., Manga-González, M.Y. & Del-Pozo-Carnero, P. (1993) Coprological study of the Dicrocoelium dendriticum (Digenea) egg elimination by cattle in highland areas in León Province, northwest Spain. Parasitology Research 79, 488491.Google Scholar
Huang, W.Y., He, B., Wang, C.R. & Zhu, X.Q. (2004) Characterisation of Fasciola species from Mainland China by ITS-2 ribosomal DNA sequence. Veterinary Parasitology 120, 7583.Google Scholar
Huang, S.Y., Zhao, G.H., Fu, B.Q., Xu, M.J., Wang, C.R., Wu, S.M., Zou, F.C. & Zhu, X.Q. (2012) Genomics and molecular genetics of Clonorchis sinensis: current status and perspectives. Parasitology International 61, 7176.Google Scholar
Jeandron, A., Rinaldi, L., Abdyldaieva, G., Usubalieva, J., Steinmann, P., Cringoli, G. & Utzinger, J. (2011) Human infections with Dicrocoelium dendriticum in Kyrgyzstan: the tip of the iceberg? Journal of Parasitology 97, 11701172.Google Scholar
Luton, K., Walker, D. & Blair, D. (1992) Comparisons of ribosomal internal transcribed spacers from two congeneric species of flukes (Platyhelminthes: Trematoda: Digenea). Molecular and Biochemical Parasitology 56, 323327.Google Scholar
Manga-González, M.Y. & González-Lanza, C. (2005) Field and experimental studies on Dicrocoelium dendriticum and dicrocoeliosis in northern Spain. Journal of Heminthology 79, 291302.Google Scholar
Manga-González, M.Y., González-Lanza, C., Cabanas, E. & Campo, R. (2001) Contributions to and review of dicrocoeliosis, with special reference to the intermediate hosts of Dicrocoelium dendriticum. Parasitology 123, 91114.Google Scholar
Martínez-Ibeas, A.M., Martínez-Valladares, M., González-Lanza, C., Miñambres, B. & Manga-González, M.Y. (2011) Detection of Dicrocoelium dendriticum larval stages in mollusk and ant intermediate hosts by PCR, using mitochondrial and ribosomal internal transcribed spacer (ITS-2) sequences. Parasitology 138, 19161923.Google Scholar
Maurelli, M.P., Rinaldi, L., Capuano, F., Perugini, A.G., Veneziano, V. & Cringoli, G. (2007) Characterization of the 28S and the second internal transcribed spacer of ribosomal DNA of Dicrocoelium dendriticum and Dicrocoelium hospes. Parasitology Research 101, 12511255.Google Scholar
Orosová, M., Ivica, K.H., Eva, B. & Marta, S. (2010) Karyotype, chromosomal characteristics of multiple rDNA clusters and intragenomic variability of ribosomal ITS2 in Caryophyllaeides fennica (Cestoda). Parasitology International 59, 351357.CrossRefGoogle ScholarPubMed
Otranto, D. & Traversa, D. (2002) A review of dicrocoeliosis of ruminants including recent advances in the diagnosis and treatment. Veterinary Parasitology 107, 317335.Google Scholar
Otranto, D. & Traversa, D. (2003) Dicrocoeliosis of ruminants: a little known fluke disease. Trends in Parasitology 19, 1215.Google Scholar
Otranto, D., Rehbein, S., Weigl, S., Cantacessi, C., Parisi, A., Lia, R.P. & Olson, P.D. (2007) Morphological and molecular differentiation between Dicrocoelium dendriticum (Rudolphi, 1819) and Dicrocoelium chinensis (Sudarikov and Ryjikov, 1951) Tang and Tang, 1978 (Platyhelminthes: Digenea). Acta Tropica 104, 9198.Google Scholar
Page, R.D. (1996) TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358.Google Scholar
Rollinson, D., Walker, T.K. & Simpson, A.J. (1986) The application of recombinant DNA technology to problems of helminth identification. Parasitology 92, 5371.Google Scholar
Sandoval, H., Manga-González, Y., Campo, R., García, P., Castro, J.M. & Pérez de la Vega, M. (1999) Preliminary study on genetic variability of Dicrocoelium dendriticum determined by random amplified polymorphic DNA. Parasitology International 48, 2126.Google Scholar
Taira, K., Shirasaka, S., Taira, N., Ando, Y. & Adachi, Y. (2006) Morphometry of lancet flukes found in Japanese sika deer (Cervus nippon centralis) captured in Iwate Prefecture, Japan. Journal of Veterinary Medical Science 68, 375377.Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.Google Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.Google Scholar
Wang, C.R., Gao, J.F., Zhu, X.Q. & Zhao, Q. (2012) Characterization of Bunostomum trigonocephalum and Bunostomum phlebotomum from sheep and cattle by internal transcribed spacers of nuclear ribosomal DNA. Research in Veterinary Science 92, 99102.Google Scholar
Zhu, X.Q., Podolska, M., Liu, J.S., Yu, H.Q., Chen, H.H., Lin, Z.X., Luo, C.B., Song, H.Q. & Lin, R.Q. (2007) Identification of anisakid nematodes with zoonotic potential from Europe and China by single-strand conformation polymorphism analysis of nuclear ribosomal DNA. Parasitology Research 101, 17031707.CrossRefGoogle ScholarPubMed