Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T05:00:28.687Z Has data issue: false hasContentIssue false

Biochemical composition and carbohydrate metabolism of the metacercariae of Clinostomum complanatum (Trematoda: Digenea)

Published online by Cambridge University Press:  18 November 2009

Afzal A. Siddiqui
Affiliation:
Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh-202001, India
Wajih A. Nizami
Affiliation:
Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh-202001, India

Abstract

The biochemical composition of the metacercariae of Clinostomum complanatum is: free glucose 0·516% of wet wt (2·14% of dry wt), glycogen 4·39% of wet wt (18·30% of dry wt), protein 8·7% of wet wt (36·23% of dry wt), lipids 8·64% of wet wt (35·96% of dry wt), RNA 0·08% of wet wt (0·335% of dry wt) and DNA 0·035% of wet wt (0·145% of dry wt). The pattern of glucose uptake, glucose leakage and effect of starvation on the glycogen content is similar to that reported for adult digeneans. Lactic and pyruvic acids (1·478 and 0·019μimol/g wet wt/h respectively) were found in the incubates, suggesting the presence of an active carbohydrate metabolism. Protein and lipid metabolism are also discussed briefly.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arme, C. (1975) Chemical composition of Diclidophora merlangi (Monogenea), Zeitsclirift fur Parasitenkunde, 47, 211215.CrossRefGoogle Scholar
Carroll, J. J., Smith, N. & Babson, A. L. (1970) A colorimetric scrum glucose determination using hexokinasc and glucose-6-phosphatc dehydrogenase. Bichemical Medicine, 4, 171.CrossRefGoogle Scholar
Czok, R. & Lamprect, W. (1974) Pyruvate, phosphoenolpyruvate and D-glycerate-2-phosphate. In: Methods of Enzymatic Analysis, 2nd edit, (editors Bergmeyer, H.U.), pp. 14461451. New York and London: Academic Press.Google Scholar
Eckert, J.& Lehner, B.(1971) Sauerstoflverbrauch, Substrataufnahme und Lactatausscheidung von Dicrococlium tlendriticum (Trematoda). Zeitschrift fiir Parasitenkunde, 37, 288302.Google Scholar
Engelbrecht, H. & Palm, V. (1964) Der endogene Glykogen- und Fettstoflwechsel in seiner Bcdcutung fur die DifTcrenzicrung, Lebcns- und Infektionslahigkeit der Entwicklungsstadien parasitischer Wiirmer. Zeitschrift fur Parasitenkunde, 24, 88104.CrossRefGoogle Scholar
Folch, J., Lees, M. & Slonestanley, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497509.CrossRefGoogle ScholarPubMed
Giles, K. & Myers, A.(1965) An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature, 206, 93.CrossRefGoogle Scholar
Gutmann., I. & Wahlefeld, A. W. (1974) L-(+)-Lactate determination with lactate dehydrogenase and NAD. In: Methods of Enzymatic Analysis, 2nd edit, (editor Bergmeyer, H. U.), pp. 14641468. New York and London: Academic Press.Google Scholar
Hutchinson, W. C, Downie, E. D. & Munro, H. N.(1962) Deoxyribonucleic acid and ribonucleic acid extraction from animal tissues and their estimation. Biochimica et Biophysica Acta, 257,567.Google Scholar
Lee, S. H., Song, C. Y., Lee, K. B. & Lee, H. S. (1978) Study on the chromosomal proteins of Fasciola hepatica. Korean Journal of Parasitology, 16, 26–10.CrossRefGoogle Scholar
Lowry, O. N., Rosebrough, A, Farr, A. & Randall, R. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265275.CrossRefGoogle Scholar
Macinnis, A. J, (1970) Isolation of protein fractions. In: Experiments and Techniques in Parasitology. (Maclnnis, A. J. & Voge, M.), p. 173. W. H. Freeman and Company: San Francisco.Google Scholar
Misra, U. K. (1968) Liver lipids of rats administered excessive amounts of retinol. Canadian Journal of Biochemistry, 46, 697701.CrossRefGoogle ScholarPubMed
Montgomery, R. (1957) Determination of glycogen. Archives of Biochimistry and Biophysics, 67, 378386.CrossRefGoogle ScholarPubMed
Munro, H. N. & Fleck, A. (1967) The determination of nucleic acids. Methods of Biocltemical Analysis. 14, 133176.Google Scholar
Roe, J. H. & Dailey, D. E. (1966) Determination of glycogen with the anthrone reagent. Analytical Biochemistry, 15, 245250.CrossRefGoogle ScholarPubMed
Smyth, J. D. & Clegg, J. A. (1959) Egg-shell formation in trematodes and cestodes. Experimental Parasitology, 8, 286323.CrossRefGoogle ScholarPubMed
Smyth, J. D. (1976) Introduction to Animal Parasitology, 2nd edition. London: Hodder and Stoughton.Google Scholar
Thomas, R. E. & Gallicchio, V. (1967) Metabolism of 14C glucose by metacercariae of Clinostomum complanatum (Trematoda). Journal of Parasitology, 53, 981984.CrossRefGoogle Scholar
Von Brand, T. (1973) Biochemistry of Parasites. New York and London: Academic Press.Google Scholar
Yusufi, A. N. K. & Siddiqi, A. H. (1976) Comparative studies on the lipid composition of somedigenetic trematodes. International Journal for Parasitology, 6, 58.CrossRefGoogle ScholarPubMed
ZöLlner, N. & Kirsch, K. (1962) Uber die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen naturlichen Lipoden (alien bakannten Plasmalipoiden) gemeinsamen Sulphophospovanillin-Reaktion. Zeitscltriftfiir die gesamte experimented Medizin, 135,545–561.Google Scholar