Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T06:55:17.502Z Has data issue: false hasContentIssue false

Ascorbic acid levels in the proglottides of four species of cestode parasites of mammals and birds in relation to their sexual maturity

Published online by Cambridge University Press:  05 June 2009

R. S. Tandon
Affiliation:
Department of Zoology, Kumaun University, Nainital, U.P.India
Sushma Gupta
Affiliation:
Department of Zoology, Kumaun University, Nainital, U.P.India

Abstract

Ascorbic acid levels were found to be closely related to different stages of growth and maturity of Avitellina centripunctata, Moniezia expansa, and Stilesia globipunctata from goats and sheep and of Raillietina echinobothrida from fowl. The ascorbic acid level in avian parasites was higher than that in mammalian. The level was highest in immature proglottides and lowest in gravid proglottides.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chandler, A. C. (1939) Studies on the nutrition of tapeworms. American Journal of Hygiene, 37, 121129.Google Scholar
Fullmer, H. M., Martin, G. R. & Burns, J. P. (1961) Role of ascorbic acid in the formation and maintenance of dental structures. Annals of the New York Academy of Sciences, 92, 286294.CrossRefGoogle ScholarPubMed
Gameel, A. A. (1982) Fasciola hepatica, plasma ascorbic acid, plasma iron and iron binding capacity in experimentally infected sheep. Zeitschrift für Parasitenkunde, 68, 185189.CrossRefGoogle ScholarPubMed
Gould, B. S. (1958) Biosynthesis of collagen. III. The direct action of ascorbic acid on hydroxyproline and collagen formation in subcutaneous polyvinyl sponge implants in guinea-pigs. Journal of Biological Chemistry, 232, 637649.CrossRefGoogle ScholarPubMed
Gross, J. (1959) Studies on the formation of collagen. IV. Effect of vitamin C deficiency on the neutral salt extractable collagen of skin. Journal of Experimental Medicine, 109, 557569.CrossRefGoogle ScholarPubMed
Hager, A. (1941) Effects of dietary modifications of host rats on the tapeworm Hymenolepis diminuta. Iowa State College Journal of Science, 15, 127153.Google Scholar
Holz, J. (1961) Quantitation Untersuchungen Uber den Vitamin C—Gehalt einiger helminthen. Wiadomosci Parazytologiczne, 7, 115120.Google Scholar
Horowitz, H. N. & King, C. G. (1953) The conversion of glucose 6–C to ascorbic acid by the albino rat. Journal of Biological Chemistry, 200, 125128.CrossRefGoogle Scholar
Il' Yasov, I. N. (1977) The biochemistry of Raillietina. Trudy Nauchno- Issledovalel' Skogo Veterinarogo Instituta Tadzhiskoi, 7, 6872.Google Scholar
Mitoma, C. & Smith, T. E. (1960) Studies on the role of ascorbic acid in collagen synthesis. Journal of Biological Chemistry, 235, 426428.CrossRefGoogle ScholarPubMed
Murray, H. C. & Morgan, A. F. (1946) Carbohydrate metabolism in the ascorbic acid-deficient guinea pig under normal and anoxic conditions. Journal of Biological Chemistry, 163, 401418.CrossRefGoogle ScholarPubMed
Pantelouris, E. M. & Hale, P. A. (1962) Iron and vitamin C in Fasciola hepatica. Research in Veterinary Science, 3, 300303.CrossRefGoogle Scholar
Phifer, R. (1960) Permeation and membrane transport in animal parasites. Further observations on the uptake of glucose by Hymenolepis diminuta. Journal of Parasitology, 46, 137144.CrossRefGoogle ScholarPubMed
Roe, J. H. & Keuther, C. A. (1943) The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivative of dihydro ascorbic acid. Journal of Biological Chemistry, 147, 399.CrossRefGoogle Scholar
Rothstein, M. & Nicholas, W. L. (1969) Culture method and nutrition of nematodes and Acanthocephala. In: Chemical Zoology Vol. III, (editors Florkin, M. and Scheer, B. T.) pp. 289328. Academic Press: New York.CrossRefGoogle Scholar
Tandon, R. S. & Misra, K. C. (1980) Ascorbic acid levels of trematode parasites of fish and mammalian hosts. Zeitschrift für Parasitenkunde, 62, 191193.CrossRefGoogle ScholarPubMed
Taylor, A. E. R. & Baker, J. R. (1968) The Cultivation of Parasites in vitro. Blackwell: Oxford.Google Scholar
Von Brand, T. (1973) Biochemistry of Parasites. Academic Press: New York.Google Scholar
Wagner, A. F. & Folkors, K. (1964) Vitamins and Coenzymes. Inter-Science Publishers: New York.Google ScholarPubMed
Weinstein, P. & Jones, M. F. (1956) The in vitro cultivation of Nippostrongylus muris to the adult stage. Journal of Parasitology, 42, 215236.CrossRefGoogle Scholar
Weinstein, P. & Jones, M. F. (1959) Development in vitro of some parasitic nematodes of vertebrates. Annals of the New York Academy of Sciences, 77, 137162.CrossRefGoogle Scholar
Williams, M. O., Hopkins, C. A. & Wyllie, M. R. (1961) The in vitro cultivation of strigeid trematodes. III. Yeast as a medium constituent. Experimental Parasitology, 11, 121127.CrossRefGoogle Scholar