Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:33:27.307Z Has data issue: false hasContentIssue false

Antechiniella septentrionalis n. sp. (Spirurida: Acuariidae), a new intestinal nematode parasite of the tundra vole Microtus oeconomus (Pallas) (Rodentia: Muridae) in the north-east of Russia

Published online by Cambridge University Press:  15 May 2018

E.S. Ivanova*
Affiliation:
Centre of Parasitology of A.N. Severtsov Institute of Ecology and Evolution RAS, Leninskii prospect 33, 119071, Moscow, Russia
N.E. Dokuchaev
Affiliation:
Institute of Biological Problems of the North, Far East Branch, Russian Academy of Sciences, 685000, Magadan, Russia
S.E. Spiridonov
Affiliation:
Centre of Parasitology of A.N. Severtsov Institute of Ecology and Evolution RAS, Leninskii prospect 33, 119071, Moscow, Russia
*
Author for correspondence: E.S. Ivanova E-mail: [email protected]

Abstract

Antechiniella septentrionalis n. sp. (Spirurida: Acuariidae) is described from the duodenum of a tundra vole, Microtus oeconomus (Pallas), collected in the Magadan region in the north-east part of Russia. It differs from A. suffodiax (Beveridge & Barker, 1975) and A. sertatum Smales, 1991 mainly in having a larger number of postcloacal papillae (5–6 pairs vs 4 pairs), a differently shaped left spicule, the disposition of precloacal papillae in two rows vs one, and oblong vs oval eggs. Other differences include the different disposition of ovaries in A. septentrionalis n. sp and A. suffodiax and the different structure of deirids in A. septentrionalis n. sp. and A. sertatum. The new species was characterized molecularly (partial sequences for 18S rRNA, 28S rRNA and cox1 mtDNA). The phylogenetic analyses performed showed the affinity of the new species to the members of the Acuariidae and other spirurid nematodes.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, SF et al. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.Google Scholar
Alvarez, F et al. (1994) Paracuaria hispanica n. sp. (Nematoda: Acuariidae), a stomach parasite of the Pyrenean desman Galemys pyrenaicus Geoffr. (Insectivora: Talpidae), with a redefinition of the genus Paracuaria Rao, 1951. Systematic Parasitology 29, 105112.Google Scholar
Anderson, RC, Chabaud, AG and Wilmott, S (Eds) (2009) Keys to the nematode parasites of vertebrates. Wallingford, CAB International.Google Scholar
Anderson, RC and Wong, PL (1996) Skrjabinoclava kinsellai n. sp. (Nematoda: Acuarioidea) from the rice rat Oryzomys palustris in Florida. Systematic Parasitology 28, 14.Google Scholar
Bain, O, Mutafchiev, Y and Junker, K (2014) Order Spirurida. pp. 661732 in Schmidt-Rhaesa, A (Ed.) Handbook of zoology: Gastrotricha, Cycloneuralia and Gnathifera. Volume 2. Nematoda. Berlin, De Gruyter.Google Scholar
Batzli, G and Lesieutre, C (1991) The influence of high quality food on habitat use by arctic microtine rodents. Oikos 60, 299306.Google Scholar
Beveridge, I and Barker, IK (1975) Acuariid, capillariid and hymenolepidid parasites of the dasyurid marsupial Antechinus stuartii Macleay, 1841, from southeastern Australia. Journal of Helminthology 49, 211227.Google Scholar
Černotíková, E, Horák, A and Moravec, F (2011) Phylogenetic relationships of some spirurine nematodes (Nematoda: Chromadorea: Rhabditida: Spirurina) parasitic in fishes inferred from SSU rRNA gene sequences. Folia Parasitologica 58, 135148.Google Scholar
Chernyavskii, FB (1984) Mammals of the far north-east Siberia. Nauka, Moscow (in Russian).Google Scholar
Coleman, ChO (2003) “Digital inking”: how to make perfect line drawings on computers. Organisms, Diversity and Evolution 3, Electronic Supplement 14, 114.Google Scholar
Darriba, D et al. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772772.Google Scholar
Dokuchaev, NE and Atrashkevich, GI (2015) Unusual nematode infestation in tundra vole from the northern Sea of Okhotsk coast. pp. 35–36 in New data on parasites: Materials of V Interregional conference “Parasitological investigations in Siberia and Far East”, 14 –16 September 2015, Novosibirsk (in Russian).Google Scholar
Domnich, IF (1984) Rauschivingylus asiaticus n. sp. (Nematoda, Filaroididae) from rodents in north-eastern Asia and its life cycle. Parazitologiya 18, 244247 (in Russian).Google Scholar
Domnich, IF (1985) Fauna of helminths of terrestrial mammals in Magadan region (fauna, life cycles, ecology). PhD thesis, Moscow University, Russia (in Russian).Google Scholar
Floyd, RM et al. (2005) Nematode-specific PCR primers for the 18S small subunit rRNA gene. Molecular Ecology Notes 5, 611612.Google Scholar
Gubanov, NM and Fedorov, KP (1965) A new species of parasitic nematode from the lungs of rodents in the Yakutsk region. pp. 78–80 in Parasitic worms of domestic and wild animals: papers on helminthology presented to Prof. A.A. Sobolev on the 40th anniversary of his scientific and teaching activity. Vladivistok, Dalnevostochnii Gosudarstvenii Universitet (in Russian).Google Scholar
Gubanov, NM and Fedorov, KP (1967) New species of helminths from Muridae in the Yakutsk region. pp. 117–126 in Materials of the Scientific Conferences of All-Union Society of Helminthologists, Moscow, Part 5 (in Russian).Google Scholar
Hasegawa, H, Shiraishi, S and Rochman, (1992) Tikusnema javaense n. gen., n. sp. (Nematoda: Acuarioidea) and other nematodes from Rattus argentiventer collected in west Java, Indonesia. Journal of Parasitology 78, 800804.Google Scholar
Holterman, M et al. (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution towards crown clades. Molecular Biology and Evolution 23, 17921800.Google Scholar
Jančev, JI (1972) Paracuaria soricis n. sp. (Acuariidae) of Sorex araneus L. in Bulgaria. Comptes Rendus de l’ Académie Bulgare des Sciences 25, 693695.Google Scholar
Kostenko, VA (2000) Rodents (Rodentia) of the Russian Far East. Vladivostok, Dal'nauka (in Russian).Google Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: Molecular evolutionary genetics analysis. Version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.Google Scholar
Little, MD and Ali, MM (1980) Chandleronema longigutturata (Chandler, 1942) gen. et comb. n. (Nematoda: Acuariidae) from raccoons, Procyon lotor, in Louisiana. Journal of Parasitology 66, 555558.Google Scholar
McPherson, SE and Tiner, JD (1952) A new nematode (Rictularia microti) from a vole on St. Lawrence Island, Alaska. Chicago Academy of Sciences Natural History Miscellanea 108, 17.Google Scholar
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. pp. 1–8 in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA.Google Scholar
Mutafchiev, Y, Mariaux, J and Georgiev, BB (2015) Stammerinema hyalinum n. comb. for Filaria hyalina von Linstow, 1890 and its recognition as a senior synonym of Stammerinema rhopalocephalum (Sołtys, 1952) (Spirurida: Acuariidae), a parasite of shrews. Systematic Parasitolology 90, 105111.Google Scholar
Nadler, SA et al. (2006) Phylogeny of Cephalobina (Nematoda): molecular evidence for recurrent evolution of probolae and incongruence with traditional classifications. Molecular Phylogenetics and Evolution 40, 696711.Google Scholar
Nadtochi, EV (1966) New species of nematodes from rodents on the Kuril Islands. Materials of the Scientific Conferences of All-Union Society of Helminthologists 18, 191–195 (in Russian).Google Scholar
Quentin, J-C and Beveridge, I (1986) Comparative morphogenesis of the cephalic structures of the acuariid nematodes Stammerinema soricis (Tiner, 1951), Antechiniella suffodiax (Beveridge & Barker, 1975) n. g., n. comb. and Skrjabinoclava thapari (Teixeira de Freitas, 1953). Systematic Parasitology 8, 163171.Google Scholar
Seinhorst, JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 5460.Google Scholar
Shenbrot, GI and Krasnov, BR (2005) An atlas of the geographic distribution of the Arvicoline rodents of the world (Rodentia, Muridae: Arvicolinae). Moscow, Pensoft.Google Scholar
Smales, LR (1991) A new species of Antechiniella Quentin & Beveridge, 1986 (Nematoda: Acuariidae) from the Australian water rat, Hydromys chrysogaster Geoffroy, 1804. Transactions of the Royal Society of South Australia 115, 217220.Google Scholar
Smales, LR (1995) A revision of the genus Tikusnema (Nematoda: Acuarioidea) with the description of a new species from the false water-rat, Xeromys myoides from Queensland. Transactions of the Royal Society of South Australia 119, 8994.Google Scholar
Smales, LR (2006) A new acuariid species (Spirurida, Acuariidae) and other nematodes from Hydromys (Muridae, Hydromyinae) from Papua, Indonesia and Papua New Guinea. Zootaxa 1110, 2737.Google Scholar
Teixeira de Freitas, JF (1953) “Echinuriinae” parasito de mamífero (Nematoda, Spiruroidea). pp. 8994 in Dayal, J and Singh, KS (Eds) Thapar commemoration volume. A collection of articles presented to Prof. G.S. Thapar on his 60th birthday. Lucknow, University of Lucknow.Google Scholar
Tinnin, DS, Ganzorig, S and Gardner, SL (2011) Helminths of small mammals (Erinaceomorpha, Soricomorpha, Chiroptera, Rodentia, and Lagomorpha) of Mongolia. Faculty Publications from the Harold W. Manter Laboratory of Parasitology. Paper 696. http://digitalcommons.unl.edu/parasitologyfacpubs/696Google Scholar
Yamaguti, S (1961) Systema Helminthum, Vol. 3. The nematodes of vertebrates. New York, Interscience Publications.Google Scholar
Yudin, BS, Krivosheev, VG and Belyaev, VG (1976) Small mammals of the northern far east of Russia. Novosibirsk, Nauka (in Russian).Google Scholar