Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-18T17:22:54.413Z Has data issue: false hasContentIssue false

Steinernema shori n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from India

Published online by Cambridge University Press:  08 September 2023

S. Soni
Affiliation:
Indira Gandhi Krishi Vishwavidyalaya, Raipur–492012, Chhattisgarh, India
J. Patil*
Affiliation:
Indian Council of Agricultural Research (ICAR)–National Bureau of Agricultural Insect Resources, Bengaluru–560024, Karnataka, India
V. Linga
Affiliation:
Indian Council of Agricultural Research (ICAR)–National Bureau of Agricultural Insect Resources, Bengaluru–560024, Karnataka, India
P.H. Mhatre
Affiliation:
ICAR–Central Potato Research Station, Udhagamandalam, Nilgiris–643004, Tamil Nadu, India
M.T. Gowda
Affiliation:
ICAR–Indian Institute of Vegetable Research, Varanasi–221305, Uttar Pradesh, India
J. Ganguli
Affiliation:
Indira Gandhi Krishi Vishwavidyalaya, Raipur–492012, Chhattisgarh, India
V. Půža
Affiliation:
Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05 Ceské Budejovice, Czech Republic
*
Corresponding author: J. Patil; Email: patiljaggi@gmail.com

Abstract

In this study, morphological and molecular features were used to identify a new Steinernema sp. from Chhattisgarh, India. Morphological and molecular features provide evidence for placing the new species into the “bicornutum” clade. The new species is characterized by the following morphological features: infective juveniles with a body length of 587 (494–671) μm; a distance from the anterior end to excretory pore of 46 (43–50) μm; a distance from anterior end to nerve ring of 72 μm (61–85 μm); and E% of 88 (77–97). The first-generation males are characterised by 27 genital papillae and very short spicules, with a length of 61 μm (53–67) μm. The SW% and GS% ratio of S. shori n. sp. are 139 (107–190) and 75 (62–90), respectively. The new species is further characterized by sequences of the internal transcribed spacer and partial 28S regions of the ribosomal DNA. Phylogenetic analyses show that S. shori n. sp. is most closely related to S. abbasi, S. kandii, and S. yirgalemense.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Joint first authors.

References

Akhurst, RJ (1980). Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal of General Microbiology 121, 2, 303309. https://doi.org/10.1099/00221287-121-2-303Google Scholar
Altschul, SF, Madden, TL, Schäffer, AA, Zhang, J, Miller, W, Lipman, DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 17, 33893402. https://doi.org/10.1093/nar/25.17.3389CrossRefGoogle ScholarPubMed
Bedding, RA, Akhurst, RJ (1975). A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 21, 1, 109110. https://doi.org/10.1163/187529275X00419CrossRefGoogle Scholar
Bhat, AH, Machado, AR, Abolafia, J, Askary, TH, Půža, V, Ruiz-Cuenca, AN, Ameen, F, Rana, A, Sayed, S, Al-Shuraym, LA (2023). Multigene sequence-based and phenotypic characterization reveals the occurrence of a novel entomopathogenic nematode species, Steinernema anantnagense n. sp. Journal of Nematology, 55, 1, 20230029. https://doi.org/10.2478/jofnem-2023-0029CrossRefGoogle ScholarPubMed
Cabanillas, HE, Poinar, GO Jr, Raulston, JR (1994). Steinernema riobravis n. sp. (Rhabditida: Steinernematidae) from Texas. Fundamental and Applied Nematology 17, 123131.Google Scholar
Cimen, H, Půža, V, Nermut′, J, Hatting, J, Ramakuwela, T, Hazir, S (2016). Steinernema biddulphi n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from South Africa. Journal of Nematology 48, 3, 148158. https://doi.org/10.21307/jofnem-2017-022CrossRefGoogle Scholar
De Maeseneer, J, D’ Herde, J (1963). Méthodes utilisées pour 1’étude des anguillules libres du sol. Revue de l’ Agriculture Bruxelles 16, 441447.Google Scholar
Elawad, S, Ahmed, W, Reid, AP (1997). Steinernema abbasi sp. n. (Nematoda: Steinernematidae) from the Sultanate of Oman. Fundamental and Applied Nematology 20, 5, 435442.Google Scholar
Fayyaz, S, Yan, X, Qiu, L, Han, R, Gulsher, M, Khanum, TA, Javed, S (2014). A new entomopathogenic nematode, Steinernema bifurcatum n. sp. (Rhabditida: Steinernemati- dae) from Punjab, Pakistan. Nematology 16, 7, 821836. https://doi.org/10.1163/15685411-00002811CrossRefGoogle Scholar
Godjo, A, Afouda, L, Baimey, H, Couvreur, M, Zadji, L, Houssou, G, Wimbert, Willems A, Decraemer, W (2019). Steinernema kandii n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from northern Benin. Nematology 21, 2, 107128. https://doi.org/10.1163/15685411-00003201CrossRefGoogle Scholar
Grifaldo-Alcantara, PF, Alatorre-Rosas, R, Segura-León, O, Hernandez-Rosas, F (2017). Steinernema ralatorei n. sp. isolated from sugarcane areas at Veracruz, Mexico. Southwestern Entomologist 42, 1, 171190. https://doi.org/10.3958/059.042.0117CrossRefGoogle Scholar
Hall, TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hominick, WM (2002). Biogeography. In Gaugler, R (ed), Entomopathogenic Nematology. Wallingford, UK: CABI Publishing, 115143.CrossRefGoogle Scholar
Hooper, DJ (1970). Handling, fixing, staining, and mounting nematodes. In Southey, JF (ed) Laboratory Methods for Work with Plant and Soil Nematodes, 5th edition. London: Her Majesty’s Stationery Office, 3954.Google Scholar
Jian, H, Reid, AP, Hunt, DJ (1997). Steinernema ceratophorum n. sp. (Nematoda: Steinernematidae), a new entomopathogenic nematode from north-east China. Systematic Parasitology 37, 115125. https://doi.org/10.1023/A:1005798031746CrossRefGoogle Scholar
Kanzaki, N, Futai, K (2002). A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within the xylophilus group. Nematology 4, 1, 3541. https://doi.org/10.1163/156854102760082186CrossRefGoogle Scholar
Kaya, HK, Stock, SP ( 1997). Techniques in insect nematology. In Lacey, I (ed), Manual of Techniques in Insect Pathology. San Diego: Academic Press, 313314.Google Scholar
Khatri-Chhetri, HB, Waeyenberge, I, Spiridonov, SE, Manadhar, HM, Moens, M (2011). Two new species of Steinernema Travassos, 1927 with short IJ from Nepal. Russian Journal of Nematology 19, 1, 5374.Google Scholar
Kumar, S, Stecher, G, Tamura, K (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 7, 18701874. https://doi.org/10.1093/molbev/msw054CrossRefGoogle ScholarPubMed
Nei, M, Kumar, S (2000). Molecular Evolution and Phylogenetics. New York: Oxford University.Google Scholar
Nguyen, KB (2007). Methodology, morphology and identification. In Nguyen, KB, Hunt, DJ (eds.) Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Simbionts. Nematology Monographs & Perspectives 5. Leiden: Brill, 59119.CrossRefGoogle Scholar
Nguyen, KB, Smart, GC Jr (1990). Steinernema scapterisci n. sp. (Rhabditida: Steinernematidae). Journal of Nematology 22, 2, 187199.Google Scholar
Nguyen, KB, Smart, GC Jr (1995). Scanning electron microscope studies of Steinernema glaseri (Nematoda: Steinernematidae). Nematologica 41, 183190.CrossRefGoogle Scholar
Nguyen, KB, Smart, GC Jr (1997). Scanning electron microscope studies of spicules and gubernacula of Steinernema spp. (Nemata: Steinernematidae). Nematologica 43, 465480.CrossRefGoogle Scholar
Nguyen, KB, Tesfamariam, M, Gozel, U, Gaugler, R, Adams, BJ (2004). Steinernema yirgalemense n. sp. (Rhabditida: Steinernematidae) from Ethiopia. Nematology 6, 839856. https://doi.org/10.1163/1568541044038605Google Scholar
Patil, J, Linga, V, Mhatre, PH, Gowda, MT, Rangasamy, V, Půža, V (2023). Steinernema indicum n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from India. Nematology 25, 7, 815833. doi: https://doi.org/10.1163/15685411-bja10258CrossRefGoogle Scholar
Půža, V (2015). Control of insect pests by entomopathogenic nematodes. In Lugtenberg, B (ed), Principles of Plant-Microbe Interaction, Microbes for Sustainable Agriculture. Springer Cham Heidelberg: New York Dordrecht London., 175183.CrossRefGoogle Scholar
Rzhetsky, A, Nei, M (1992). A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution 9, 5, 945967. https://doi.org/10.1093/oxfordjournals.molbev.a040771Google Scholar
Saitou, N, Nei, M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 4, 406425. https://doi.org/10.1093/oxfordjournals.molbev.a040454Google Scholar
San-Blas, E, Morales-Montero, P, Portillo, E, Nermut′, J, Půža, V (2016). Steinernema goweni n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Zulia State, Venezuela. Zootaxa 4067, 200214.CrossRefGoogle Scholar
San-Blas, E, Portillo, E, Nermut′, J, Půža, V, Morales-Montero, P (2015). Steinernema papillatum n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Venezuela. Nematology 17, 9, 10811097. https://doi.org/10.1163/15685411-00002925CrossRefGoogle Scholar
Seinhorst, JW (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 1, 6769. https://doi.org/10.1163/187529259X00381CrossRefGoogle Scholar
Shahina, F, Anis, M, Reid, AP, Rowe, J, Maqbool, M (2001). Steinernema pakistanense sp. n. (Rhabditida: Steinernematidae) from Pakistan. International Journal of Nematology 11, 1, 124133.Google Scholar
Tailliez, P, Laroui, C, Ginibre, N, Paule, A, Pagès, S, Boemare, N (2010). Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. International Journal of Systematic and Evolutionary Microbiology 60, Pt. 8, 19211937. https://doi.org/10.1099/ijs.0.014308-0CrossRefGoogle Scholar
Tallósi, B, Peters, A, Ehlers, R-U (1995). Steinernema bicornutum sp. n. (Rhabditida: Steinernematidae) from Vojvodina, Yugoslavia. Russian Journal of Nematology 3, 2, 7180.Google Scholar
Vrain, TC, Wakarchuk, DA, Levesque, AC, Hamilton, RI (1992). Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15, 6, 563573.Google Scholar
Weisburg, WG, Barns, SM, Pelletier, DA, Lane, DJ (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173, 2, 697703. https://doi.org/10.1128/jb.173.2.697-703.1991CrossRefGoogle ScholarPubMed
White, GF (1927). A method for obtaining infective juvenile nematode larvae from cultures. Science 66, 1709, 302303. https://doi.org/10.1126/science.66.1709.302-aCrossRefGoogle Scholar
Supplementary material: File

Soni et al. supplementary material

Table S1

Download Soni et al. supplementary material(File)
File 18 KB