Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:53:57.509Z Has data issue: false hasContentIssue false

Phylogenetic relationships of Spiruromorpha from birds of prey based on 18S rDNA

Published online by Cambridge University Press:  01 June 2008

M. Honisch*
Affiliation:
Leibniz Institute for Zoo and Wildlife Research, PO Box 601103, BerlinD-10252, Germany
O. Krone
Affiliation:
Leibniz Institute for Zoo and Wildlife Research, PO Box 601103, BerlinD-10252, Germany

Abstract

A total of 153 free-ranging birds from Germany belonging to 15 species were examined for nematodes in their digestive and respiratory tracts. In 51.7% of the birds 14 different nematode species were found: the intestinal ascarids Porrocaecum depressum and P. angusticolle, the strongylid Hovorkonema variegatum, which inhabits the trachea and bronchi, the hairworms Eucoleus dispar and Capillaria tenuissima isolated from the digestive system, the spirurid nematodes Cyrnea leptoptera, C. mansioni, C. seurati, Microtetrameres cloacitectus, Physaloptera alata, P. apivori, Synhimantus hamatus and S. laticeps, which inhabit the proventriculus and gizzard of the raptors, and the spirurid nematode Serratospiculum tendo, which lives in the air sacs. To revise their systematic positions the ribosomal 18S gene regions of the nematode species were analysed and a phylogenetic tree was constructed. The molecular data confirmed the morphological systematics, except the spirurid family Physalopteridae, which grouped together with the Acuariidae.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.C. (Ed.) (2000) Nematode parasites of vertebrates. Their development and transmission. 2nd edn.London, CAB International.CrossRefGoogle Scholar
Anderson, R.C. & Bain, O. (1975) No 3: keys to genera of the order Spirurida, part 2 Spiruroidea, Habronematoidea and Acuariodea. in Anderson, R.C., Chabaud, A.G. & Willmot, S. (Eds) CIH keys to the nematode parasites of vertebrates. New York, CAB International.Google Scholar
Anderson, R.C. & Bain, O. (1976) No 3: keys to genera of the order Spirurida, part 3 Diplotriaenoidea, Aproctoidea and Filarioidea. in Anderson, R.C., Chabaud, A.G. & Willmot, S. (Eds) CIH keys to the nematode parasites of vertebrates. New York, CAB International.Google Scholar
Blaxter, M.L. (2003) Nematoda: genes, genomes and the evolution of parasitism. Advances in Parasitology 54, 102168.Google Scholar
Blaxter, M.L., De Ley, P., Gareys, J.R., Liu, L.X., Scheideman, P., Vierstraete, A., Vanfleteren, R.J., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T. & Thomas, W.K. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392, 7175.CrossRefGoogle ScholarPubMed
Blouin, M.S. (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcript spacer. International Journal for Parasitology 32, 527531.CrossRefGoogle Scholar
Chabaud, A.G. & Bain, O. (1994) The evolutionary expansion of the Spirurida. International Journal for Parasitology 24, 11791201.Google Scholar
Chilton, N.B., Gasser, R.B. & Beveridge, I. (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). International Journal for Parasitology 25, 647651.CrossRefGoogle Scholar
Chilton, N.B., Gasser, R.B. & Beveridge, I. (1997) Phylogenetic relationships of Australian strongyloid nematodes inferred from ribosomal DNA sequence data. International Journal for Parasitology 27, 14811494.CrossRefGoogle ScholarPubMed
Dorris, M., De Ley, P. & Blaxter, M.L. (1999) Molecular analysis of nematode diversity and the evolution of parasitism. Parasitology Today 15, 188193.CrossRefGoogle ScholarPubMed
Doster, G.L. & Goater, C.P. (1997) Collection and quantification of avian helminths and protozoa. pp. 396418in Clayton, D.H. & Moore, J. (Eds) Host–parasite evolution. New York, Oxford University Press.CrossRefGoogle Scholar
Durette-Desset, M.-C., Beveridge, I. & Spratt, D.M. (1994) The origin and evolutionary expansion of the Strongylida (Nematoda). International Journal for Parasitology 24, 11391165.Google Scholar
Gasser, R.B. (2001) Identification of parasitic nematodes and study of genetic variability using PCR approaches. pp. 5382in Kennedy, M.W. & Harnett, W. (Eds) Parasitic nematodes. London, CABI.Google Scholar
Gasser, R.B. & Newton, S.E. (2000) Genomic and genetic research on bursate nematodes: significance, implications and prospects. International Journal for Parasitology 30, 509534.CrossRefGoogle ScholarPubMed
Hartwich, G. (Ed.) (1975) I. Rhabditida und Ascaridida. Die Tierwelt Deutschlands. p. 62. Jena, Germany, Gustav Fischer Verlag (in German).Google Scholar
Krone, O. (2000) Endoparasites in free-ranging birds of prey in Germany. pp. 101116in Lumeij, J.T., Remple, D., Redig, P.T., Lierz, M. & Cooper, J.E. (Eds) Raptor biomedicine III. Florida, USA, Zoological Education Network.Google Scholar
Krone, O. & Cooper, J.E. (2002) Parasitic diseases. pp. 105120in Cooper, J.E. (Ed.) Birds of prey: health and diseases. Oxford, Blackwell Science.CrossRefGoogle Scholar
Kumar, S., Tamura, K. & Nei, N. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150163.CrossRefGoogle ScholarPubMed
Lierz, M., Göbel, T. & Schuster, R. (2002) Untersuchungen zum Vorkommen von Parasiten bei einheimischen Greifvögeln. Berliner Münchner Tierärztliche Wochenschrift 115, 4352(in German).Google Scholar
Lukes, J., Horák, A. & Scholz, T. (2005) Helminth genome projects: all or nothing. Trends in Parasitology 21, 265266.CrossRefGoogle ScholarPubMed
Meldal, B.H.M., Debenham, N.J., De Ley, P., Tandingan De Ley, I., Vanfleteren, J.R., Vierstraete, A.R., Bert, W., Borgonie, G., Moens, T., Tyler, P.A., Austen, M.C., Blaxter, M.L., Rogers, A.D. & Lambshead, P.J.D. (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Molecular Phylogenetics and Evolution 42, 622636.Google Scholar
Skrjabin, K.I. & Sobolev, A.A. (1963) Spiruroidei. in Skrjabin, K.I. (Ed.) Essentials of nematology 11. Moscow, Izdatel'stvo Akademii Nauk SSSR (in Russian).Google Scholar
Skrjabin, K.I. & Sobolev, A.A. (1964) Fizalopteriodei. in Skrjabin, K.I. (Ed.) Essentials of nematology 12. Moscow, Izdatel'stvo Akademii Nauk SSSR (in Russian).Google Scholar
Skrjabin, K.I. & Sobolev, A.A. (1965) Akuarioidei. in Skrjabin, K.I. (Ed.) Essentials of nematology 12. Moscow, Izdatel'stvo Akademii Nauk SSSR (in Russian).Google Scholar
Ward, F.P. & Fairchild, D.G. (1972) Air sac parasites of the genus Serratospiculum in falcons. Journal of Wildlife Diseases 24, 165168.Google Scholar
Wijová, M., Moravec, F., Horák, A. & Lukes, J. (2006) Evolutionary relationships of Spirurina (Nematoda: Chromadorea: Rhabditida) with special emphasis on dranunculoid nematodes inferred from SSU rRNA gene sequences. International Journal for Parasitology 36, 10671075.CrossRefGoogle ScholarPubMed